
Zero Servers With Zero Broadcasts

Miguel Castro
Microsoft Research

Cambridge, UK

mcastro@microsoft.com

Greg O’Shea
Microsoft Research

Cambridge, UK

gregos@microsoft.com

Antony Rowstron
Microsoft Research

Cambridge, UK

antr@microsoft.com

ABSTRACT
To achieve the vision of networks that work without any
supporting infrastructure, we need wireless ad hoc technol-
ogy to replace the cabling infrastructure, but we also need
self-configuring network and application services to replace
the server infrastructure. Current solutions perform poorly
because they either pick a single host to act as the server
or they use network wide broadcasts to implement services.
We need wireless ad hoc networks with zero servers and zero
broadcasts!

Can we use DHTs to build both network- and application-
level services with zero servers and zero broadcasts? This
paper starts to answer this question. It shows that it is im-
portant to remove broadcasts at all levels of the networking
stack and describes how to use the Virtual Ring Routing
protocol to achieve our vision.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer Com-
munication Networks

General Terms
Algorithms

Keywords
Wireless ad hoc networks, Distributed Hash Tables

1. INTRODUCTION
It would be great if networks could work without any sup-

porting infrastructure. This would allow computers to com-
municate and access services when it is not feasible or con-
venient to deploy a supporting infrastructure, or when an
existing infrastructure fails. Removing the need for deploy-
ing and maintaining a supporting infrastructure may also
reduce hardware and management costs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiShare’06,September 25, 2006, Los Angeles, California, USA.
Copyright 2006 ACM 1-59593-558-4/06/0009 ...$5.00.

Wireless ad hoc networks provide an important step to-
wards this vision. They enable hosts to communicate with-
out wires, routers, or access points. However, they still rely
on servers not only to provide network services, for example
DHCP [9] and DNS [16], but also to provide application ser-
vices, e.g. file systems and instant messaging. We are inter-
ested in providing network and application services in small
scale scenarios, for example in the home or in a meeting, and
in large-scale scenarios. For example, in an office building
or office floor, where an office building’s wired network is
completely replaced by a wireless mesh network [10]. Such
networks will need to scale to a couple of hundred hosts.

There has been some work towards configuring a net-
work automatically without requiring servers. The IETF
Zeroconf working group has defined protocols [2, 4, 3, 12]
that enable small networks to self-configure and perform ser-
vice discovery without DHCP and DNS servers. However,
these protocols make extensive use of broadcasts, for ex-
ample, hosts broadcast ARP [20] packets to allocate IP ad-
dresses [2] and they broadcast DNS requests [4] to locate the
host responsible for a DNS record. In larger-scale networks,
e.g. office mesh networks, the use of broadcasts reduces the
bandwidth available to other applications as the network
size increases [17].

Additionally, the Zeroconf work does not address the prob-
lem of providing application services without servers. Sim-
ply assigning a server role to a host in the network does not
address the problem. Performance will be poor because, as
the network grows, the host is unlikely to have the com-
munication and computation resources required to play the
server role. Also, if the hosts to perform server roles are
selected arbitrarily then it is necessary to make the service
resilient to host failure.

We propose using Distributed Hash Table (DHT) tech-
nology [25, 21, 27, 23] to implement both network- and
application-level services without using any servers or any
broadcasts for wireless networks. DHTs can be used to im-
plement peer-to-peer versions of both network- and appli-
cation level services. They balance the load of managing
hash-table keys across all the hosts in the network and they
route messages sent to a key to the host responsible for man-
aging the key. For example, one could implement DNS by
hashing the domain name associated with a DNS record to
obtain a key and publishing the record by sending a mes-
sage to the key. Other hosts could then lookup the record
by sending a request to the key obtained by hashing the do-
main name. This implementation balances the load to serve
DNS requests across all the nodes in the network and it does

(a) CDF of the fraction of hosts
contacted by each host.

(b) CDF of the ratio of ARP re-
quests to URL lookups per host.

(c) CDF of the number of ARP
requests per one-minute window.

Figure 1: Traffic changes with serverless web caching.

not use broadcasts.
DHTs have traditionally been implemented as overlays on

top of existing network routing protocols but this approach
can perform poorly in wireless ad hoc networks. The prob-
lem is that moving from a server-based implementation to
a DHT-based implementation can significantly change the
traffic patterns in the network: it increases the number of
flows to distinct destinations and shortens their lifetime.
This can impact the underlying network protocols, for exam-
ple, it causes reactive routing protocols [14, 19] and the ARP
protocol to perform poorly because of a large increase in the
number of network-wide broadcasts. We present results of
experiments driven by real traces that shows one ARP re-
quest is generated for every two pages requested when using
a DHT-based Web cache [13].

We propose using Virtual Ring Routing (VRR) [1] to im-
plement services. VRR implements both traditional point-
to-point routing and DHT functionality with no broadcasts.
Unlike reactive protocols, it performs well with a DHT work-
load and, unlike proactive protocols [18, 5], it performs well
with mobility [1]. VRR offers an API to write DHT appli-
cations at user level. We used this API to implement ARP
and we present some encouraging preliminary performance
results. Our approach can remove the need for servers and
it can scale to larger networks than previous approaches be-
cause it eliminates broadcasts.

The rest of the paper is organized as follows. Section 2
examines how traffic patterns change when servers are re-
placed by DHT-based service implementations. Section 3.1
provides an overview of VRR and Section 3.2 describes the
DHT functionality it provides. Section 3.3 describes an ARP
implementation that uses VRR’s DHT functionality to elim-
inate broadcasts and Section 3.4 presents some preliminary
performance results. We conclude in Section 4.

2. TRAFFIC CHANGES WITH NO SERVERS
Moving from a client/server implementation to a DHT

implementation of a service changes traffic patterns in the
network. These changes can invalidate assumptions that the
underlying network protocols rely on for performance. We
ran experiments with an example service to illustrate this
problem but the problem applies to any service.

We simulated, using a discrete event simulator, a DHT-
based Web caching service [13] to illustrate how traffic pat-
terns change. In particular we evaluated the impact of these
changes on the performance of the Address Resolution Pro-
tocol (ARP). These changes would have a similar impact
on other protocols, for example, on reactive routing proto-

cols [1]. The simulation was driven by a trace of requests re-
ceived by the centralized Web proxy server in our Microsoft
Research Cambridge building during the period 9/7/2001
to 8/8/2001. The trace contains entries for 105 unique IP
addresses, which we assume are 105 unique nodes, and rep-
resents an example workload for a service running on an
office wireless mesh.

In the peer-to-peer Web caching service, each node runs
a local Web cache proxy. When a node x requests a URL,
the local proxy hashes the URL to obtain a key and uses
the DHT to send the request to the node responsible for the
key, which we call the root node for the key. When the root
node receives the request, it checks its local cache for a page
with the requested URL. If it has a valid copy, it returns the
page to x. Otherwise, it retrieves the page from the origin
web server, adds the page to the cache, and returns it to x.

Initially, for each node we measured the fraction of the
nodes in the network that were the root node for at least one
URL requested by the node. Figure 1(a) shows the cumu-
lative distribution function for these measurements. As ex-
pected, the number of nodes contacted by each node is high:
the median is 75 nodes as opposed to one in the client/server
implementation.

This change in traffic patterns impacts the performance
of the ARP protocol, which is used by IPv4 to discover the
mapping between IPv4 addresses and physical hardware ad-
dresses. In ARP, each node maintains a cache of IP to phys-
ical address mappings. When a node uses an IP address of
another node on the same link, ARP checks the cache. If
no mapping is found, the ARP protocol is used to discover
the mapping. Normally this is achieved by flooding the lo-
cal link with an ARP request. If a node receives an ARP
request containing its IP address, it responds directly to the
source of the ARP request and the source adds the map-
ping to its ARP cache. In Windows, the default policy is to
timeout ARP cache entries after 10 minutes or if unused for
2 minutes.

Using the simulator with the same trace, we measured the
impact of the DHT-based Web cache on ARP. We modeled
the ARP cache on each host, and experimented with two
different caching policies for ARP: vanilla ARP, which com-
plies with the current standards, and cache all ARP, which
is optimized to improve performance when ARP requests
are flooded. In vanilla ARP when host x receives an ARP
request from any host y and x has a valid entry for y in its
cache, x resets the expiration timers for the entry. In cache
all ARP, whenever x receives an ARP request from y, x in-
serts an entry for y in its ARP cache. Both policies used the

default ARP cache timeouts in Windows with infinite cache
sizes.

The first experiment measured the ratio of ARP requests
to URL requests issued by each node. Figure 1(b) shows a
cumulative distribution function of these measurements for
the DHT-based Web cache with the two ARP caching poli-
cies, and for the client/server Web cache with a single server.
The DHT-based Web cache implementation performs sim-
ilarly with both ARP cache policies; the median for both
is approximately one ARP request for every two URL re-
quests. We also measured the number of ARP requests is-
sued per unit time across the network. Figure 1(c) shows
a cumulative distribution function of the number of ARP
requests issued in one minute windows for minutes between
08:00 and 18:00 (that is during working days). The perfor-
mance is similar with both ARP cache policies: the median
is 14 ARP requests per minute and the 95th percentile is
one ARP request per second.

The results show that changing service implementations
from a client/server model to a DHT model can have a dra-
matic impact on traffic and protocol usage patterns. This
change is necessary to support services without servers be-
cause it balances load across all the nodes in the network.
However, it can lead to very poor performance by increasing
the number of broadcasts performed by underlying network
protocols.

To achieve the vision of a network without any supporting
infrastructure, we need to build both network- and application-
level services in a wireless ad hoc network without broad-
casts and without overloading any node in the network. The
next section describes how we can use VRR [1] to do this.

3. ZERO BROADCAST SERVICES
VRR implements both traditional point-to-point network

routing and DHT functionality in a wireless ad hoc network
without using any broadcasts. We propose to implement
both application and network-level services using VRR.

There has been a significant amount of work on developing
DHT versions of application-level services for the Internet,
for example, email and instant messaging services [15], Web
caching [13], file backups [24, 6], and version control sys-
tems [26]. We plan to adapt these applications to run on a
wireless ad hoc environment using VRR.

There has been relatively little work on implementing
network-level services and protocols using DHT function-
ality. We describe how we implemented ARP using VRR to
eliminate the performance problem that we demonstrated
in the previous section. We plan to implement DHCP, DNS
and Service Discovery using a similar approach to avoid the
broadcasts in dynamic configuration of IP addresses [2], mul-
ticast DNS [4], SSDP [12] and DNS-SD [3].

This section starts with a brief overview of VRR followed
by a description of the DHT functionality it offers. Then
it presents our ARP protocol without broadcasts and some
preliminary performance results.

3.1 VRR
VRR uses random unsigned integers to identify nodes, and

organizes the nodes into a virtual ring in order of increas-
ing identifier (with wrapping around zero). Node identifiers
are fixed, unique, and location independent. To maintain
the integrity of the virtual ring with node and link failures,
each node maintains a virtual neighbor set (or vset) of car-

Figure 2: Relationship between the virtual ring and
the physical network topology.

dinality r containing the node identifiers of the r/2 closest
neighbors clockwise in the virtual ring and the r/2 closest
neighbors counter clockwise. Each node also maintains a
physical neighbor set (or pset) with the identifiers of nodes
that it can send messages to and receive messages from at
the link layer.

Figure 2(a) shows an example virtual ring with a 12-bit
identifier space (with identifiers in base 16). It also shows
the vset of the node with identifier 8F6 with r = 4.

VRR sets up and maintains routing paths between a node
and each of its virtual neighbors. These are called vset-
paths. Since node identifiers are random and location inde-
pendent, the virtual neighbors of a node will be randomly
distributed across the physical network. Therefore, vset-
paths are multi-hop in most cases. They are also bidirec-
tional because membership in the vset is symmetrical (if
node x is in the vset of node y then node y is in the vset of
x).

The routing information for a vset-path is stored in the
routing tables of the nodes along the path. Each node main-
tains a routing table with information about the vset-paths
to its virtual neighbors and other vset-paths that are routed
through the node. A routing table entry identifies the two
vset-path endpoints and the next hop towards each end-
point. This information is maintained proactively, i.e., it is
maintained even when there is no traffic along the vset-path.

Figure 2(b) shows the mapping between the virtual ring
and the physical network topology and it shows the vset-
paths between node 8F6 and its virtual neighbors.

VRR does not setup or maintain paths between nodes
that are not virtual neighbors because vset-paths can be
used to route packets between any pair of nodes in the net-
work. VRR nodes route packets to destination identifiers
by forwarding them to the next hop towards the path end-
point whose identifier is numerically closest to the destina-
tion identifier from among all the endpoints in their routing
table.

If there is a correct vset-path between each node and its
virtual neighbors, VRR can route between any pair of nodes
by following the vset-paths between neighboring nodes along
the ring. But VRR does better because each node uses not
only the vset-paths to its virtual neighbors but also vset-
paths between other nodes that happen to be routed through
it. The following approximate analysis provides some intu-
ition into how this works. If each node maintains r vset-
paths to its virtual neighbors and the average path length
is p, the total number of routing table entries in an n node
network is nrp. Therefore, each node will have on average
rp entries for vset-paths in its routing table: r entries for the
paths to its virtual neighbors and r(p−1) additional entries
for vset-paths through the node. If we assume that these

Figure 3: Software architecture.

additional vset-paths end at nodes that are selected ran-
domly and uniformly, the probability that a random node
has a path to a random destination is O(rp/n). Therefore,
a packet is expected to reach a node that has a vset-path
to the destination after visiting O(n/(rp)) nodes, which will
add only a constant stretch if p grows with

√
n (as in wireless

ad hoc networks).
VRR does not use flooding at all and it uses only location

independent identifiers to route. All control and data pack-
ets are routed as described above without any translation
to location based addresses. In particular, control messages
to setup new vset-paths are routed using the existing vset-
paths. A detailed description of VRR can be found in [1].

The version of VRR used in this paper is implemented
using the Mesh Connectivity Layer (MCL) toolkit from Mi-
crosoft Research [8]. MCL adds a new kernel module that
appears as a virtual network adapter to the Windows TCP/IP
stack, which allows the use of unmodified IP-based proto-
cols and applications over VRR. This implementation uses
48-bit virtual MAC addresses as node identifiers.

3.2 DHT functionality
VRR provides not only point-to-point network routing be-

tween two nodes but also a distributed hash table (DHT) [25,
21, 27, 23]. VRR routes messages sent to a numerical key
to the node whose identifier is numerically closest to the
key. This is the node responsible for managing information
associated with the key. The key management load can be
balanced across all the nodes in the network by selecting
both node identifiers and keys uniformly at random from
the identifier space.

VRR is designed to provide consistent routing to the node
responsible for a key with high probability even with node
mobility and failures. It uses local failure detection and
a guaranteed failure notification mechanism to detect node
and link failures quickly and with low overhead [1]. Ad-
ditionally, VRR does not need to transfer hash table data
across nodes when they move because node identifiers are
fixed and independent of the topology. In contrast, propos-
als to implement DHTs using coordinate-based routing [22,
11] require data shuffling when nodes move.

VRR is implemented as a device driver in the kernel but
it exposes DHT functionality to user-level applications to
simplify development. This is done by tunneling UDP mes-
sages between the driver and an application through the un-
modified IP stack and socket layers (as shown in Figure 3).
Applications send DHT messages to a reserved IP address
that is the same across all VRR machines. These messages
include the destination key in the UDP payload. The lo-
cal driver intercepts these messages and routes them to the
node responsible for the destination key, which is the node
whose identifier is numerically closest to the most significant
48 bits in the key. The driver in the node responsible for the

key sets the destination address in the message to another
reserved IP address that is used by applications to receive
DHT messages. Then, it sends the message up the IP stack
to be received by the DHT application responsible for the
destination key. Additionally, applications can query the lo-
cal driver to obtain relevant information, for example, the
set of identifiers in the node’s vset. Applications also receive
notification messages when the vset changes. This interface
is very similar to the key-based routing API described in [7].

We implemented a simple C# layer that provides a DHT
interface on top of the low level key-based routing API. The
DHT API is shown in Figure 4. The constructor takes a ref-
erence to a VRRInterface object that implements the key-
based routing API and a VSet object that implements the in-
terface to obtain information about the vset from the driver.
The DHT class replicates key/value pairs in the nodes in the
vset of the node responsible for the key. The identifier sup-
plied to the constructor allows multiple DHT applications in
the network. The Put methods allow applications to store
key/value pairs in the DHT. The user can specify a call-
back to invoke if a Put fails. The Get method retrieves the
value associated with the key supplied as argument from the
DHT. The argument callback is invoked with the reply or
a failure notification.

3.3 Zero broadcast ARP
In this section we describe, as an illustrative example of

a network service implemented using a DHT, the ARP pro-
tocol implemented as a user-level DHT-based program run-
ning on the VRR nodes. In general, routing protocols im-
plemented at layer 2.5 [8] (like MCL and VRR), make the
wireless network appear as a single Ethernet network to the
higher layers. Conventionally, ARP is implemented using
network broadcasts in these layer 2.5 implementations. In
contrast our ARP implementation uses a DHT to store the
mappings between IP addresses and 48-bit VRR addresses.

Figure 5 shows the source code for the ARPService class,
which implements the DHT-based ARP protocol. We omit
some of the support functions from the code for clarity. Each
VRR node in the network creates an instance of ARPService
when it is initialized. The constructor receives a VRRInterface

object through which it communicates with the VRR driver,
a VSet object and an Intercept object. It creates a DHT ob-
ject and registers with the Intercept service. Intercept

allows all packets from a particular protocol (ARP in this
case) to be intercepted by the driver and forwarded to the
specified application at user-level. The constructor also uses
dht.Put to insert a mapping between the hash of the IP ad-
dress bound to the local VRR interface and the virtual MAC
address of the local VRR interface. PutFailure is called if
dht.Put is not completed successfully and it simply re-issues
the dht.Put.

Whenever an ARP request is generated by the IP stack,
the VRR driver intercepts the packet and it is tunneled to
the user-level where the ReceivedRaw method is invoked.
The ReceivedRaw method extracts the IP address being re-
solved from the packet, hashes the address to obtain a DHT
key, and performs dht.Get to get the MAC address associ-
ated with the key. When the dht.Get completes, GetResponse
is invoked by the DHT implementation with the key, the
corresponding value, and the original ARP packet as argu-
ments. It generates an ARP response using the original ARP
packet and the returned value. This response is passed down

public interface DHTGetResponse { // called when a response to a Get is received
void GetResponse(Key key, byte[] value, object cargs);

}
public interface DHTPutResponse { // called when a Put fails

void PutFailure(Key key, byte[] value, object cargs);
}

public class DHT : Application, VSetInfo {
// create a new DHT application on interface vrr with identifier id
public DHT(VRRInterface vrr, VSet vset, int repFactor, byte id) {...}
// Put value in the DHT under key
public void Put(Key key, byte[] value) {...}
// Put value in the DHT under key and request a callback in failure with cargs
public void Put(Key key, byte[] value, DHTPutResponse callback, object cargs) {...}
// Get value under key from the DHT; the callback is invoked with the response and cargs
public void Get(Key key, DHTGetResponse callback, object cargs) {...}

}

Figure 4: The DHT API that exposes VRR’s DHT functionality to user-level applications.

public class ARPservice : Application, DHTGetResponse, DHTPutResponse
{

private VRRInterface vrr;
private DHT dht;

public ARPservice(VRRInterface vrr, Intercept intercept, VSet vset)
{

this.vrr = vrr;
this.dht = new DHT(vrr, vset, Parameters.ARP_DHT); // Create a new DHT instance for the ARP Service
intercept.RegisterApplications(Protocols.ARP, this); // Register that all ARP protocol packets should be intercepted
dht.Put(SHA1(vrr.GetIPv4Address()), vset.myVRRAddress(), this, null); // Insert IPv4 to VRR Address mapping in DHT

}

// All ARP requests issued by the driver are delivered via this callback
public void ReceivedRaw(byte[] payload) {

dht.Get(Key.Hash(ExtractIPv4AddressARPRequest(payload)), payload, this);
}

public void GetResponse(Key key, byte[] value, object cargs) {
if (value == null) return; // Not found in DHT
// Send the ARP response to the VRR driver - specifying LOOPBACK
vrr.Transmit(new Header(null,LOOPBACK), ARPReplyPacket((byte []) cargs, value));

}

// When the DHT fails to insert the key this method is called
public void PutFailure(Key key, byte[] value, object cargs) {

dht.Put(key, value, this, cargs);
}

}

Figure 5: ARP service implementation using the VRR user level APIs. The function vrr.GetIPv4Address gets
the IP address bound to the VRR interface, ExtractIPv4AddressARPRequest extracts the IP address that is
being resolved from an ARP request packet. The function ARPReplyPacket takes an ARP request packet and
a VRR address and creates an ARP response packet.

to the VRR driver using the vrr.Transmit method specify-
ing that the packet should be looped back, i.e., sent by the
driver back up the IP stack to update the ARP cache.

This example demonstrates how easy it is to implement
DHT-based versions of network-level services using the VRR
driver and user-level libraries. Since our implementation
of ARP replaces network-wide broadcasts by a single DHT
lookup, it avoids the performance problems we discussed in
the previous section.

3.4 ARP evaluation
We deployed the DHT-based ARP implementation on a 41

machine 802.11a testbed. The machines run Windows XP
and are distributed across two floors of our office building
(Figure 6). Most machines are placed in offices and a small
number in cubicles in open-plan areas. Each machine has a
NetGear WAG 311 wireless network card, and the diameter
of the network is 5. VRR is configured with a vset size of
four (r = 4), and a hello period of two seconds.

We ran an experiment to compare the performance of the
DHT-based ARP implementation with a broadcast imple-

Figure 6: Floor plan of the 41 machine 802.11a PC
testbed.

mentation of ARP used in the MCL. Each machine pinged
all other machines starting from an empty ARP cache. Then,
it pinged all other machines again (with a populated ARP
cache). We repeated this process five times and computed
the average ping times in both cases. The difference be-
tween these times is equal to the average delay to resolve
ARP requests. Figure 7 shows these delays averaged across
all machine pairs for both implementations. The resolution
latency is low in both cases. The broadcast implementa-

Figure 7: ARP resolution latency.

tion performs better because the network is not loaded, but
the number of messages per ARP resolution is only 4.78 in
the DHT implementation and it is more than 41 messages
in the broadcast implementation. The performance of the
DHT-based ARP implementation could also be improved by
moving it into the kernel.

4. CONCLUSION AND FUTURE WORK
This paper describes our initial work on developing ef-

ficient zero Infrastructure scalable wireless networks. We
show how to implement application- and network-level ser-
vices with zero servers and zero broadcasts using VRR. We
also show that moving from server-based to DHT-based ser-
vice implementations can significantly change the traffic pat-
terns in the network. These changes can cause network pro-
tocol implementations that rely on network-wide broadcasts
to perform poorly. We present an example that illustrates a
general solution to this problem: an implementation of the
ARP protocol that uses a DHT to eliminate broadcasts.

We are currently building an entire set of network-level
services, such as DNS and DHCP, using VRR. We are also
building and evaluating a number of application-level DHT-
based services that have been developed for the Internet to
understand how to efficiently implement them in wireless ad
hoc networks.

5. REFERENCES
[1] M. Caesar, M. Castro, E. Nightingale, G. O’Shea, and

A. Rowstron. Virutal Ring Routing: Network routing
inspired by DHTs. In Sigcomm’06, 2006.

[2] S. Cheshire, B. Aboba, and E. Guttman. Dynamic
Configuration of IPv4 Link-Local Addresses (RFC
3927), May 2005. http://ietf.org/rfc/rfc3927.txt.

[3] S. Cheshire and M. Krochmal. DNS-Based Service
Discovery (Internet Draft), June 2005.

[4] S. Cheshire and M. Krochmal. Multicast DNS
(Internet Draft), June 2005.

[5] T. Clausen and P. Jacquet. OLSR RFC3626, Oct.
2003. http://ietf.org/rfc/rfc3626.txt.

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proc. ACM SOSP’01, Banff, Canada, Oct. 2001.

[7] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and
I. Stoica. Towards a common API for structured P2P
overlays. In IPTPS, Feb 2003.

[8] R. Draves, J. Padhye, and B. Zill. Comparison of
routing metrics for static multi-hop wireless networks.
In SIGCOMM’04, Aug. 2004.

[9] R. Droms. Dynamic Host Configuration (RFC 2131),
Mar. 1997. http://ietf.org/rfc/rfc2131.txt.

[10] J. Eriksson, S. Agarwal, P. Bahl, and J. Padhye.
Feasibility study of mesh networks for all-wireless
offices. In Mobisys, June 2006.

[11] R. Fonseca, S. Ratnasamy, J. Zhao, C. Ee, D. Culler,
S. Shenker, and I. Stoica. Beacon vector routing:
Scalable point-to-point in wireless sensornets. In
NSDI’05, May 2005.

[12] Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright.
Simple Service Discovery Protocol (Internet Draft),
Oct. 1999.

[13] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A
decentralized peer-to-peer web cache. In PODC, July
2002.

[14] D. Johnson and D. Maltz. Dynamic source routing in
ad hoc wireless networks. In Ad Hoc Networking, 2001.
Chapter 5, pg 139-172, Addison-Wesley.

[15] A. Mislove, A. Post, C. Reis, P. Willmann,
P. Druschel, D. Wallach, X. Bonnaire, P. Sens, J.-M.
Busca, and L. Arantes-Bezerra. POST: A secure,
resilient, cooperative messaging system. In HotOs,
May 2003.

[16] P. Mockapetris. Domain Names - Implementation and
Specification (RFC 1035), Nov. 1987.
http://ietf.org/rfc/rfc1035.txt.

[17] S. Ni, Y. Tseng, Y. Chen, and J. Sheu. The broadcast
storm problem in a mobile ad hoc network. In
MOBICOM, Aug. 1999.

[18] C. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing (DSDV)
for mobile computers. In SIGCOMM’94, Aug. 1994.

[19] C. Perkins and E. Royer. Ad hoc on-demand distance
vector routing. In Mobile Computing Systems and
Applications, Feb. 1999.

[20] D. Plummer. Converting Network Protocol Addresses
to 48.bit Ethernet Address for Transmission on
Ethernet Hardware (RFC 826), Nov. 1982.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
SIGCOMM’01, Aug. 2001.

[22] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker. GHT: A geographic
hash table for data-centric storage. In WSNA’02,
Sept. 2002.

[23] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Middleware, Nov. 2001.

[24] A. Rowstron and P. Druschel. Storage management
and caching in PAST, a large-scale, persistent
peer-to-peer storage utility. In Proc. ACM SOSP’01,
Banff, Canada, Oct. 2001.

[25] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In ACM
SIGCOMM’01, Aug. 2001.

[26] A. Yip, B. Chen, and R. Morris. Pastwatch: A
distributed version control system. In NSDI, May
2006.

[27] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: an
infrastructure for fault-resilient wide-area location and
routing. In Technical report UCB//CSD-01-1141,
U.C. Berkeley, Apr. 2001.

