
Feasibility of Content Dissemination Between Devices in
Moving Vehicles

Thomas Zahn, Greg O’Shea, Antony Rowstron
Microsoft Research, Cambridge, U.K.

gregos@microsoft.com, antr@microsoft.com

ABSTRACT
We investigate the feasibility of content distribution between
devices mounted in moving vehicles using commodity WiFi.
We assume that each device stores content in a set of files,
and that each file has a version number. When two de-
vices come into wireless range, they attempt to synchronize
the latest versions of any files they have in common. This
is challenging because connections are often short-lived and
have variable link quality. Prior work demonstrates that
current protocols perform badly under these conditions. To
motivate this work, we use the example of Personal Naviga-
tion Devices (PNDs), or SatNavs, where the content to be
exchanged includes maps and points-of-interest files.

We describe a protocol enabling devices in vehicles to iden-
tify and exchange content of shared interest. We evaluate
the protocol using a small vehicular testbed in two urban lo-
cations and on a highway with a closing speed of 140MPH.
We investigate the effects of using 802.11a versus 802.11g,
placing the antenna inside or outside the vehicle, and vary-
ing the packet size. We transfer up to 70MB in the urban
settings and 7MB on the highway.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; C.2.2 [Network Protocols]: Applications

General Terms
Algorithms, Design

Keywords
Vehicular, Mobility, Wireless

1. INTRODUCTION
Vehicle mounted devices, such as Portable Navigation De-

vices (PNDs), Satellite Navigation Devices or GPS devices,
which are mounted on a vehicle’s windshield, are becom-
ing increasingly popular. In Western Europe already 25%

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’09, December 1–4, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

of vehicle owners have a PND. In this paper, we describe
Broadside, a system which demonstrates the feasibility of
performing direct device-to-device content distribution be-
tween these devices, while mobile, using commodity WiFi.
This is needed because the content on the PNDs evolves over
time, e.g. maps, road construction locations, speed camera
locations, points of interest (POI), etc. Also, new content is
introduced by content providers over time, such as tourist
guides, voice packs and rich POI files.

Current PND models have several gigabytes of storage,
and this is increasing each year. The maps are usually
around a gigabyte in size, and the remaining space is used to
store other content, which is creating a trend towards larger
richer content. Limited satellite imagery is now available on
some PNDs. Point-of-interest (POI) files are evolving from
a simple longitude latitude coordinate and short textual de-
scription, and are beginning to include images, longer de-
scriptions, reviews, etc. For example, a POI file representing
the UK historic monuments and buildings run by a preser-
vation charity would contain approximately 800 entries, and
as a text POI would require less than 10KB. However, in-
cluding opening times, general description and prices, and a
single small image, requires approximately 35MB.

Manufacturers already use a number of techniques to up-
date the content on deployed PNDs. Early models required
the PND to synchronize through an Internet connected PC.
However, owners infrequently synchronized so many current
high-end models include some form of wireless connectivity,
either built-in or available as an optional extra, allowing the
content on the PND to be updated during use. For example,
some TomTom models use Bluetooth to connect the PND
to a mobile phone, and others use dedicated dongles con-
nected to the PND. These allow the PND to use the cellular
network to retrieve content updates. Others use FM-based
wireless broadcast channels.

We describe and evaluate Broadside, a system that uses
commodity WiFi to enable vehicle mounted PNDs to ex-
change files with other PNDs that they encounter. To en-
sure that Broadside is efficient, it is designed to exploit even
short connectivity periods. Broadside uses a novel version-
aware content discovery protocol that enables two PNDs to
determine which files they need to exchange, and a novel and
efficient data transfer protocol using a bit-vector acknowl-
edgements. The content discovery protocol is designed to
incrementally discover files with low overhead rather than
discovering all files to transfer at once. The transfer proto-
col is optimized by using a vector-based acknowledgement
scheme which reduces the number of acknowledgement pack-

ets from O(P) to O(logP), where P is the number of packets
being transmitted.

We present performance measurements from three differ-
ent environments; two urban and one high speed motorway.
We demonstrate the feasibility of Broadside and also quan-
tify the impact of using 802.11a versus 802.11g, using IP
versus no IP, the impact of using externally and internally
mounted antennae, and the impact of varying the packet
size. The results show Broadside supports efficient file trans-
fer.

Section 2 surveys how content is currently disseminated to
PNDs. Section 3 describes Broadside, Section 5 presents the
Broadside evaluation. Section 6 places the work in context
to related work and, finally, Section 7 concludes.

2. BACKGROUND
For many PNDs, updating the content requires a user to

attach the PND, by USB cable, to an Internet connected PC.
However, users do this infrequently, and manufacturers have
been exploring alternative content distribution mechanisms:
predominantly using the cellular infrastructure or broadcast
channels (either FM-radio or satellite based).

Exploiting cellular infrastructure for content distribution
appears attractive but has several cost disadvantages. First,
the increase in cost of manufacture for adding a cellular
chipset is currently approximately 5-10 times higher than
adding a Bluetooth or WiFi chipset. PNDs are commodity
hardware devices, and a rough rule of thumb in the industry
is that a $1 increase in manufacturing costs translates into
a $3 increase at retail. Most PNDs retail for under $200,
and the cost of adding a cellular chipset increases this by
nearly 50%. Even if the consumer covers the extra hardware
costs, the PND manufacturer (or content provider) needs to
cover the cost of transferring the data over the cellular net-
work. Users or content providers may be willing to pay for
the small amount of bandwidth required for real-time search
results, but it is not cost effective to distribute content of
10-100’s MBs. Current rates per MB are significant enough
that distributing even relatively small files (on the order of a
few MB) can mean the bandwidth costs are higher than the
value of the content. Secondly, per-country organizations
control access to the cellular infrastructure, requiring manu-
facturers to negotiate per-country for access and potentially
requiring specific hardware for each region. Furthermore, if
the device is used in another country or with another op-
erator, the content provider can end up paying effectively
roaming data transfer rates. Thus, manufacturers tend to
sell dedicated dongles only for certain countries, where the
number of units sold is expected to be large, for example
TomTom HD Traffic which is available in larger European
markets.

These issues have caused some manufacturers to use Blue-
tooth to pair the PND to a user’s mobile phone and use it
as modem. By exploiting the user’s existing hardware and
relationship with a cellular provider, this overcomes many of
the issues from a manufacturer’s perspective. However, this
transfers the cost issue to the user. Each user’s charging plan
differs with provider and country, and naive users can end
up with large bills simply because they did not understand
the size of the content being retrieved. Furthermore, there
are often restrictions, for example, US AT&T customers us-
ing an unlimited data plan with their iPhone cannot use it
as a modem. Indeed, some PNDs highlight these issues in

their manuals, and allow users control over what is sent over
the cellular network and limit the content transfer to small
items.

The challenge of using cellular has meant other wireless
technologies have been deployed, in particular broadcast
based distribution. This usually uses FM radio channels,
and has been widely deployed for real-time low bit-rate traf-
fic and other information in many countries, e.g. RDS-TMC
(worldwide) and MSN Direct (USA). MSN Direct provides
both real-time, such as weather and traffic, and longer term
content, such as gas prices and weekly movie times. In gen-
eral, broadcast based solutions must frequently retransmit
information to ensure that all PNDs eventually receive the
content. There is no feedback, either explicit or implicit,
about when a particular file has reached all PNDs. FM-
based solutions can only provide low bit rates and are limited
to areas where licenses can be obtained and infrastructure
installed. In order to address the coverage and bandwidth
issues, satellite distribution is beginning to be deployed. For
example in the USA, there is Sirius Traffic and XM NavTraf-
fic. Again, these are continent or region specific, and there
is a significant cost associated with both the chipsets and
deploying the infrastructure, that needs to be recouped.

Given the issues with the currently used technologies, dis-
tributing content using commodity WiFi, which uses unli-
censed spectrum in most of the world, is attractive. WiFi-
based content distribution could be achieved using a set of
road-side hotspots, or by exploiting unsecured hotspots [6].
But deploying infrastructure is expensive, the opportunis-
tic use of unsecured hotspots is illegal in many regions, and
in non-urban areas, e.g. freeways, there may be no WiFi
hotspots at all. In many countries, ISPs now provide WiFi
access points for their subscribers with security enabled to
avoid installation errors and to prevent freeloading.

We believe a more feasible approach could be to use device-
to-device content distribution. While the focus of the paper
is on the challenges of performing the device-to-device trans-
fer, it is important to understand how to seed content into
the system, and how fast the information will propagate.
Seeding The seeding process can take place in many ways.
PNDs could be configured to connect to the user’s home
wireless network, whenever in range, and pull content from
a specific web site. Therefore, when some users get into
their vehicles, they will be in range of the home AP and can
pull content [6]. Many users will either not configure their
devices to work with their home networks, or park their ve-
hicles in a location where it can never connect to the home
network. These users will rely on the content propagating
through the device-to-device network. An alternative ap-
proach would be to provide a small number of fixed or mo-
bile access points, or infostations, that can provide content
to the network.

3. BROADSIDE SYSTEM OVERVIEW
We assume that each PND is equipped with 802.11 WiFi,

and when two devices come into communication range, they
synchronize using Broadside. During the synchronization, if
the two PNDs have common files, but one has a newer ver-
sion of a file, then the file is transferred between the devices.
At the end of a full synchronization, we would like, with high
probability, each shared file to be of the same (latest) version
on both devices.

In general, we assume that there is set of files, F , that

represents the universe of all files. Each file fi ∈ F has an
associated signed file certificate, ci, which contains a 160-bit
SHA1 hash of the file, a 16-bit version number and a unique
160-bit file identifier (fileId). We use a Public Key Infras-
tructure (PKI) with an offline Certification Authority (CA).
The CA generates signed public/private key pairs for con-
tent providers, and every PND has the public keys for the
CA and all the content providers. Public keys for content
providers can be distributed as files using Broadside. Each
file fi is associated with a single content provider, or owner,
and only the owner can generate new file versions. Updated
files require a new file certificate to be generated containing
the new file hash and incremented version number. Given
two file certificates containing the same fileId, the one con-
taining the highest version number is considered the latest
version. The fileId is generated by taking the SHA1 hash of
the content provider’s public key concatenated with a tex-
tual name for the file generated by the content provider.
For each file, this is also an associated instanceId, which
is a unique 160-bit number generated by taking the SHA1
hash of the file certificate, ci. The file certificate includes
the fileId, which is independent of the version and content
of the file. In contrast, the instanceId is dependent on the
version and content.

Each PND, A, is assumed to contain a set of files, dA,
where dA ⊂ F . The membership of dA can be changed
dynamically, for example by applications running on A. It
should be noted that applications can distribute file and
configuration information in files distributed by Broadside.

4. BROADSIDE
Our prototype Broadside implementation uses a standard

Atheros 802.11a/b/g chipset and firmware. We used the
Atheros reference driver, modified to send a network join
probe every 100ms, instead of once per second, and to over-
come two issues: first to prevent premature network dis-
connect on a busy link when beacons were lost but unicast
packets were being successfully received; second to reset the
card on network disconnection to clear an occasional but
persistent fault where the card would transmit for only the
first 60ms of every 100ms interval. We set the 802.11 con-
figuration parameters to use ad-hoc mode, a static channel,
SSID and BSSID, to disable power management features and
to set the disconnection timeout to two seconds [19, 9, 14].

Prior work has highlighted overheads when using IP: (i) IP
address assignment and (ii) IP duplicate address detection
and (iii) IP address resolution and (iv) protocol timeouts in
the order of seconds. This motivated us to compare two im-
plementations of Broadside. Both versions use the same con-
tent discovery algorithms, but Broadside-IP uses IP packets
and relies upon TCP retransmissions, where Broadside-Raw
uses raw Ethernet packets and the data transfer protocol
described below.
Broadside-IP uses the standard unmodified Windows XP
SP2 TCP/IP stack with a statically assigned IP address and
an empty ARP cache. It runs the content discovery algo-
rithm over TCP, and the files are also transferred using TCP.
There is a 1500 byte MTU imposed by the IP stack. In Win-
dows XP, a failed TCP connection attempt is retried after
3 and 9 seconds, and abandoned after 21 seconds. During
early testing, we observed that this meant that sometimes
during a run no data was transferred as the TCP connec-
tion could not be established within the connection window.

Therefore, in Broadside-IP, we explicitly restart TCP con-
nections after just one second in order to circumvent these
timeouts.
Broadside-Raw exchanges 2304-byte packets directly with
the 802.11 driver, using the wireless MAC address as the
address of the device. Each packet has a standard Ethernet
header with a special Ethernet packet type. The 802.11 and
Ethernet headers are fixed size, so the overhead per data
bit drops as the packet size increases, but transmit time
increases with packet size which can lead to higher packet
loss. Note that a device running Broadside-Raw can also
contain a TCP/IP stack.

4.1 Content Discovery
Once link-level connectivity has been established between

two PNDs they need to identify one or more files to trans-
fer. To enable this, each PND periodically broadcasts an
application-level beacon including the number of files it cur-
rently has and a hash of the content. The content hash
is generated by hashing the list of instanceIds for each file
stored on the PND, ordered by fileId. Whenever a PND syn-
chronizes with another PND, it caches the associated con-
tent hash, and when it receives a beacon from any device, it
checks the cache to see if it has already synchronized with
a device advertising the same content hash. If not, the two
PNDs synchronize.

Synchronization requires the PNDs to determine the set of
files that are in common, but with different version numbers.
Intuitively the fileId, which is version independent, is used
to discover common files, and instanceId, which is version
dependent, is used to discover different versions. Connec-
tion windows are often short, so the aim is to determine
these files incrementally with few messages: as soon as a file
is identified it can be transferred. The total number of mes-
sages required, as well as the expected number of messages
before a common file with different version is found, is a
function of the number of files stored on the device. There-
fore, the PND with the lowest number of files initiates the
synchronization.

The synchronization is achieved by using Bloom filters [5].
Previous work focuses on using Bloom filters for simply de-
termining whether files are in common, and in contrast we
also need to take the version number into account. Bloom
filters encode set membership efficiently in a k−bit array
where, for each item in a set, the hashj(item) mod k bit is
set, for all hash functions in a given set of j hash functions.
To check if an item is present in the set, each hashj(item)
mod k bit is checked, and if they are all set, the item is
considered a member of the originally encoded set. Bloom
filters cannot yield false negatives, but they do yield false
positives.

The initiating PND partitions its set of files into groups of
g files randomly. It then selects one group at random and en-
codes all the fileIds in a Bloom filter, called the file filter, and
all the instanceIds in second Bloom filter called the version
filter. The length of each bloom filter is 50% of the available
packet payload, and when using the full 802.11 frame size
the length of each bloom filter is 9144 bits. There is a trade-
off between the number of items that can be encoded in a
Bloom filter and the probability of false positives. Based on
heuristics [21], we use g = 500 and 12 hash functions, yield-
ing a false positive rate of approximately 0.0154%. These
bloom filters are then sent to the responding PND.

When a set of bloom filters is received, the device checks
if each fileId it has locally is encoded in the file filter. If
the fileId is a detected in the file filter, then it checks if the
associated local instanceId is encoded in the instance filter.
If it is in both then, with high probability, the file is common
to both PNDs but the version is the same. Otherwise, if
the fileId is detected but the instanceId is not, then with
high probability, the file is common but they have different
versions, and this file is a candidate file for transfer. After
all fileIds on the device have been checked, the responding
PND will contain a list of candidate files for transfer.

The next stage is that the responding PND generates a
single packet-length bloom filter, called the match filter, en-
coding the fileIds of the candidate files for transfer. The
match filter is then returned to the initiating PND, which
checks which of the fileIds from the g files it encoded in the
file filter are present in the match filter. For each one found,
the fileId and version information, encoded in 22 bytes and
aggregated into the smallest number of packets, is then sent
back. Finally, responding PND uses this explicit file and ver-
sion information can be used to determine whether to push
or pull files to or from the initiator. Once all file exchanges
have been completed, the initiating PND sends the file and
version filter for the next group. The process is repeated
until all the groups on the initiator have been processed.

False positives for the Bloom filters can impact the syn-
chronization. False positives on the file and match filters
simply can lead to more data being passed between the de-
vices than is strictly necessary. In particular, false positives
on the file filter leads to redundant fileIds being encoded in
the match filter, and false positives on the match filter can
lead to redundant file records being transferred. The false
positive rates are configured to be low, so the overhead this
introduces is minimal. However, false positives on the ver-
sion filter can lead to a PND believing that both PNDs have
the same version of a file when they do not. Therefore, at
the end of a full synchronization, two PNDs may not have
detected all files to transfer. The probability of this occur-
ring is approximately 0.000154 for each file, which is low.
Furthermore, randomly selecting the g files in each group
means, when another device is found that contains the same
missed file, it will be successfully discovered and transferred.

4.2 Bulk transfer protocol
TCP’s performance is suboptimal for bulk data transfer in

short-lived lossy connections in vehicular networks [13]. In
Broadside-IP, we transfer files using TCP, but for Broadside-
Raw we use a more efficient bulk transfer protocol with re-
duced overhead. There are two properties that we exploit
in the transfer protocol: the source has access to the entire
file before transfer begins, and when receiving the file, the
order in which the file content is received is not important.

We use a bit-vector acknowledgment-based scheme. Each
file is split into p packets, with each packet containing a
2-byte block identifier to identify the offset within the file.
The source maintains a p-bit send vector, where each bit
represents a packet and is initialized to false. The source
continuously iterates through the packets and, if the associ-
ated bit in the send vector is false, the packets it transmitted.
The destination maintains a p-bit receive vector. Whenever
a packet is received the associated bit in the receive vector is
set. The destination sends the receive vector to the source,
which then uses the received vector as its send vector.

The destination chooses when to send the receive vector
to the sender based on the number of bits set in it. The
destination maintains a count of the number of set bits, bset,
and the number of bits set the last time the receive vector
was sent to the source, bsent. Whenever bset − bsent ≤ (p−
bsent)/2 the receive vector is sent. If a duplicate packet is
received this also triggers the sending of the receive vector.
Intuitively, this increases the number of ack packets as more
of the file packets are transferred. Hence, in the common
case this will generate O(log p) acknowledgement packets. If
an ack packet is lost, the next ack packet sent also includes
all the information. So, for a 1 MB file with a 30% loss
rate, the expected the number of acks sent is less than 1%
of the total packets sent. Furthermore, if a file transfer is
interrupted and needs to be resumed with either the same
or a different device, the receiver can provide the receive
vector and the transfer process can resume without duplicate
packets being sent.

The limitation is that the bit vector needs to be trans-
ferred between the destination and source. However, a packet
size of 1500 bytes supports a bit vector that is able to trans-
fer a file of over 17MB. Given the transfer rates achieved
by Broadside the practical limit on each file size is a few
MB. Larger files can be decomposed into multiple smaller
files, and transferred independently. We also considered us-
ing coding schemes, e.g. digital fountain [8]. These have a
low computational overhead but incur a higher transmission
overhead. More efficient coding schemes, e.g. networking
coding [1, 12], are too computationally expensive [17] to be
used in practical systems for contemporary PNDs.

5. EVALUATION
We examine the base performance of Broadside over two

different transport protocols: Broadside-Raw using raw pack-
ets, and Broadside-IP using IP packets. We also examine the
performance impact of using 802.11a versus 802.11g, the im-
pact of locating the antenna inside or outside the vehicle,
and the impact of varying the packet size.

The experiments use PCs running Windows XP/SP2, each
equipped with a commercial 802.11 card based on the Atheros
802.11a/b/g chipset and a GPS receiver. The experiments
were performed in three locations in Cambridge, UK, cho-
sen to represent different environments. In two locations,
we used one moving vehicle and one stationary vehicle and
in the third we used two moving vehicles.

Figure 1 shows aerial views of the locations, indicating
the position of the stationary vehicles and the route of the
moving vehicles.

The terraced location is in the center of town, in an area
densely populated with two-storey brick terraced housing
adjoining the sidewalk. Vehicles are parked along one side
of the street, and a one-way traffic system is enforced. The
stationary vehicle was parked at the intersection of an ad-
joining side-street. The moving vehicle achieved a speed of
approximately 15 miles per hour at closest approach.

The residential location is in the same town and is in a
suburban area consisting of lower density two-storey brick
housing. The houses have front gardens that separate the
houses from the street. Vehicles are intermittently parked on
both sides of the street. The stationary vehicle was parked
on the side of the street. The moving vehicle achieved a
speed of approximately 25 miles per hour.

The motorway location was a stretch of highway just out-

(a) Terraced

(b) Residential

(c) Motorway

Figure 1: Locations of our experiments in Cam-
bridge, UK (not to scale).

side the town. We used two moving vehicles travelling at
70 miles per hour, passing each other from opposite direc-
tions, yielding a closing speed of 140 miles per hour. The
two cars were both driving in the lanes closest to the central
reservation, which separates the two sides of the motorway.

To minimize the impact of variance in weather and changes
in the environment at each location, all experiments at a
particular location were completed on the same day. Each
experiment was run five times. A few runs were obstructed
by other vehicles or street conditions and we excluded those
runs. These runs performed better due to increased connec-
tion durations and lower vehicular speed, so the results we
present are therefore conservative. Unless otherwise stated,
all results shown are the mean of the 5 runs, with error bars
showing the maximum and minimum values.

Figure 2: Throughput (base configuration).

The base configuration used in our experiments was a Net-
gear WAG311 PCI card configured to use 802.11g (channel
1) and an external omni-directional antenna with 5dB gain.
The antenna was mounted on the dashboard in a similar
location to where a PND device would be mounted. When
running experiments in the terraced and residential loca-
tions, we recorded the number of access points using the
2.4GHz band: we observed approximately 90 and 7, respec-
tively, split roughly equally across 3 channels (1, 6 and 12).

In the experiments each laptop was configured with 50
common 10MB files in its file set, but with different ver-
sions. In order to aid in repeatability of the experiments,
one laptop acted as the data source throughout, starting
with a later version of all files. In the two locations with
a stationary vehicle, the moving vehicle contained the data
source.

The evaluation uses three base metrics: connection dura-
tion, throughput and startup delay. When two devices come
into wireless range, they establish a link, and when they go
out of range, the link breaks. We define connection duration
as the time for which both nodes consider an active link to
exist between them. We define throughput as the amount
of file content transferred during a single connection. Fi-
nally, we define the startup delay as the time between when
the link is established and the transmission of the first data
packet belonging to a file.

5.1 Transport protocols
To understand the impact of the transport protocol, we

compare the performance of Broadside-IP and Broadside-
Raw. Figure 2 shows the mean throughput achieved with
the base configuration by location, with max-min error bars,
for both Broadside-Raw and Broadside-IP. Broadside-Raw
yields higher throughput than Broadside-IP at the residen-
tial and terraced locations, achieving 44% higher throughput
on average in the residential and 40% higher on average in
the terraced. The most challenging scenario is the motor-
way where the throughput is approximately the same for
both configurations.

In order to understand the differences between the three
locations further, we show the mean connection durations in
Figure 3 for each location. As would be expected, the con-
nection durations are independent of whether Broadside-IP
or Broadside-Raw is used, as the physical layer connectivity

Figure 3: Connection duration (base configuration).

Figure 4: CDF of throughput by data rate (residen-
tial).

does not depend on the higher layer protocol. The maxi-
mum and minimum error bars are tight around the mean,
indicating that the connection duration was of similar length
per run. We also confirmed that the vehicle speed was con-
sistent across runs. The highest variance is observed for the
motorway, where repeatability was the hardest to achieve.

In Figure 2, we can see that there is approximately an or-
der of magnitude difference in the throughput achieved when
comparing residential to motorway for Broadside-Raw and
approximately a factor of 6 for Broadside-IP. From Figure 3,
we can see that only part of this difference is explained by
the shorter connection times for the motorway, with only ap-
proximately a factor of three difference in mean connection
duration between the residential and motorway locations.

To understand the difference in throughput, we need to
examine the throughput versus data rate for each location.
Figure 4 shows the CDF of throughput versus 802.11g data
rate for the mean run for both Broadside-IP and Broadside-
Raw for the residential location. The two versions of Broad-
side transfer the majority of the data at the highest two data
rates 802.11g supports. In contrast, Figure 5 shows the CDF
of throughput versus 802.11g data rate for a number of runs
on the motorway. Examining the motorway runs in detail
shows that Broadside-Raw delivers on average 7.1MB, but
two runs performed noticeably worse. Figure 5 shows the
mean run for Broadside-IP and two runs for Broadside-Raw.
Broadside-Raw Low is one of the two runs which performed

Figure 5: CDF of throughput by data rate (motor-
way).

Figure 6: Startup delay with base configuration.

noticeably worse and Broadside-Raw High is a run which
achieved better throughput. It is clear that the Broadside-
Raw High and Broadside-IP runs achieve better throughput
by utilizing the higher data rates with approximately 40%
of the data being delivered at data rates above 11 Mbps.

We conclude that there are two main differences between
the locations. The first is the connection duration, and the
second is the amount of data transferred at higher data
rates. In particular on the motorway, higher packet loss
rates caused lower data rates to dominate compared to the
other locations.

So far, we have examined the difference in performance be-
tween the locations. Figure 2 also shows, in some locations,
a significant difference in the performance between the two
Broadside versions. Recall that the two use different packet
sizes, with Broadside-Raw using 2304 bytes and Broadside-
IP using 1500 bytes and the TCP/IP stack to transfer files
while Broadside-Raw uses raw packets and the bit-vector
based acknowledgement protocol described.

We now examine the effects of each of these differences
between the two Broadside versions. First, we consider the
startup delay caused by using IP. Figure 6 shows the startup
delay, which is the time from when the link-level connection
is established to when the first file data packet is transmit-
ted. It shows that, across all three locations, in the majority
of cases Broadside-Raw delivers the first packet in under one
second. The maximum startup delays for Broadside-Raw are

Figure 7: Impact of packet size on throughput.

observed at the residential location, where two runs experi-
enced a particular set of multiple packet losses during their
content discovery phase that required them to restart the
content discovery protocol, after a one second delay.

Figure 6 shows that, across all locations, the ratio between
startup time and connection duration is at least a factor of
two greater for Broadside-IP than for Broadside-Raw. In
general, the Broadside-IP startup delay is dependent on lo-
cation while for Broadside-Raw it is independent. This is
because Broadside-IP with its dependence on the TCP/IP
stack is more impacted than Broadside-Raw by a series of
short-lived intermittent connections at the start [19, 2]. In-
terestingly, these are most frequent at the terraced location
and rare on the motorway. The effect is compounded as
the two nodes can independently disconnect and reconnect.
This means that one node can disconnect and then reconnect
transparently to the second node.

There are a number of overheads that contribute the higher
startup delay for Broadside-IP. First, when the stack is ini-
tialized, it performs a gratuitous ARP for the local IP ad-
dress for duplicate address detection. We ran some experi-
ments and determined that the IP stack waits about 100ms
for a response to this gratuitous ARP, during which time
it transmits no packets. In order to communicate with the
other node, the IP stack needs to perform an ARP request.
Windows XP does not retransmit failed ARP requests, and
instead keeps invalid (unresolved) ARP entries in the ARP
cache for approximately 3.5 seconds. A new ARP request is
only sent for IP addresses for which no entry is present in the
ARP cache. Therefore, if the ARP request or ARP response
is lost, then this can result in a significant delay. Optimizing
the TCP connection to restart after one second ensures that
soon after an invalid ARP entry is timed out, another ARP
will be generated. However, this or the response to it can
also be lost, which can yield even longer startup delays.

While the startup delay clearly impacts the throughput,
it does not fully explain the difference between throughput
achieved at each location for the two versions of Broadside.

5.2 Impact of packet size and ACK overhead
In order to understand the impact of varying the packet

size, we ran a set of dedicated experiments. The intuition
behind increasing the packet size is that the 802.11 and Eth-
ernet headers are of fixed size, and hence increasing the
packet size reduces the per payload bit overhead, thereby

Figure 8: Throughput and connection duration
when using 802.11a normalized by the results for
802.11g.

increasing throughput. However, if there is a constant bit
error rate, then increasing the packet size will increase the
packet loss rate. This can be detrimental, not just because
larger packets take longer to transmit, but also because an
increase in loss rate may cause the data rate selection algo-
rithm to lower the data rate. The experiment removed as
many overheads as possible; one node transmitted packets of
a specific size at line rate, saturating the link, whenever the
link was connected. Using the base hardware configuration,
we measured the throughput obtained at the three locations
with packet sizes of 500, 1000, 1500, 2000 and 2304 bytes.
We ran each experiment four times, and Figure 7 shows the
throughput for the median run for each packet size at the
three locations.

From Figure 7, we observe that no single packet size is ide-
ally suited to all locations, and indeed the highest through-
put is achieved by a different packet size at each location.
However, at all locations, the largest packet size achieves
reasonable performance. So, the larger packet size accounts
for a significant proportion of the gain that we see in the res-
idential setting when comparing Broadside-IP to Broadside-
Raw in Figure 2.

The final difference between the two versions of Broadside
is the use of TCP connections with acks versus the bit-vector
ack protocol for file transfer. The mean number of acknowl-
edgement bytes sent by Broadside-Raw was only 0.087 MB
compared to 1.66 MB for Broadside-IP, which is 0.1% and
3.2% of their throughput.

5.3 Impact of changing frequency band
In the next set of experiments, we examine the impact

of changing from 802.11g (2.4GHz) to 802.11a (5.4GHz) on
the performance of Broadside-Raw. We do this as a new
802.11p MAC has been proposed for inter-vehicular net-
working which is based on the 802.11a MAC at 5.9 GHz.
As we were unable to obtain any 802.11p chipsets, com-
paring 802.11a to 802.11g is the closest we can get to un-
derstanding the impact of using 802.11p. For these exper-
iments, we used a Netgear WAG511 PCMCIA card with a
PCB mounted antenna configured to use 802.11a on chan-
nel 40. In all the three locations, no access points operating
in the 802.11a 5.4GHz band were observed. Figure 8 shows
both the throughput and the connected duration when us-

Figure 9: RSSI against distance for 802.11a and
802.11g (terraced).

ing 802.11a, normalized to 802.11g using the base config-
uration, at all three locations. For all the locations, the
802.11a throughput is lower than the 802.11g throughput.
Intuitively, the signal propagation should be lower, which re-
sults in shorter connection durations for 802.11a. To demon-
strate the impact this has, Figure 9 shows the RSSI versus
distance for both 802.11a and 802.11g for the mean runs at
the terraced location. The connection duration is shorter,
with 802.11g and 802.11a forming a connection at 121 and 35
meters, respectively. Also, 802.11g has a significantly higher
RSSI during the connection period. The increased RSSI has
two effects that increase throughput. First, it results in
longer connection durations. Second, the rate adaptation
algorithm is able to exploit higher data rates for longer, and
therefore to obtain higher throughput.

The choice of antenna and wireless card had a major
impact on performance. We used two cards: the Netgear
WAG311 PCI card with an external omni-directional an-
tenna tuned to the appropriate frequency band, and the
Netgear WAG511 PCMCIA card with integrated PCB an-
tennae. The PCMCIA card on 802.11g delivered an order
of magnitude lower throughput at the residential location,
and collapsed altogether for Broadside-IP on the motorway,
compared to the base configuration. For 802.11a, the PCM-
CIA card outperformed the PCI card by a factor of two. It
is clear that selecting the correct antenna and location is
important.

5.4 Antenna location impact
The final set of experiments examined the impact of mount-

ing the antenna internally versus externally to the vehicle,
using the 802.11g base configuration. Most prior work has
used a roof mounted antenna. Recall that, in the base con-
figuration, we use an antenna mounted on top of the dash-
board, at a similar location to where a PND mounted an-
tenna would be located. For the externally mounted an-
tenna, we placed it on the roof of the vehicle.

Figure 10 shows both the throughput and connection time
of the roof mounted antenna, normalized to that of the inter-
nally mounted antenna. Interestingly, the effect of mounting
the antenna externally differs between the residential and
the other two locations. In general, mounting the antenna
externally increases the RSSI. Figure 11 shows the RSSI ver-
sus distance between the two vehicles for the closest to mean

Figure 10: Effect of antenna placement.

Figure 11: Effect of antenna placement on RSSI
(motorway).

runs for the motorway. As described in Section 5.3, the in-
crease in RSSI leads to an increased throughput. These
effects are clear for the terraced and motorway locations,
where there is a significant increase in throughput partly
accounted for by the increase in duration time and also by
the amount of data transferred at higher data rates.

From Figure 10, the residential location does not show a
significant difference between the internal and external an-
tenna. We examined this in detail. First, at this location,
building occlusions at the limits of connectivity result in
only a small increase in connection time. Further, with the
internal antenna we observe that the highest data rates are
already used for a significant proportion of the connection
duration, as was shown in Figure 4. Hence, the benefit of
the higher RSSI does not enable the use of higher data rates
in this location, as they are already used. The combina-
tion of these two factors means there is little impact on the
throughput.

5.5 Content discovery evaluation
We compare the performance of the proposed discovery

algorithm against the set reconciliation algorithm in [20],
which has been proven to provide near optimal communi-
cation overhead. Set reconciliation algorithms ensure that
two devices, after synchronization, have the same set of files.
In contrast, in Broadside each device has an arbitrary set of
files, and the content discovery algorithm identifies the com-

Figure 12: Content discovery overhead in terms of
transmitted packets.

mon files with different versions. Further, the files are found
incrementally, and with high probability the first is identi-
fied after only a few round trips. This is a more complex
problem than simple set reconciliation.

We provide a brief overview of the set reconciliation al-
gorithm from [20], and in particular describe how we adapt
it to work with version numbers. Conceptually, nodes rep-
resent their local sets as characteristic polynomials whose
zeroes represent the elements in the local set. The ratio be-
tween two characteristic polynomials then cancels out iden-
tical entries. Two nodes exchange polynomial evaluations
and locally reconstruct the polynomials through interpola-
tion and factoring. To support versions, we concatenate
fileIds with version numbers, which allows nodes to locally
determine common files with differing versions. In [20], it
is shown that a minimum number distinct evaluations need
to be exchanged. We compare against two variants: full set
and perfect knowledge. Full set represents the upper bound
of one evaluation per file. Perfect knowledge represents the
theoretical overhead if two devices knew the exact number
beforehand.

We consider a universe of 20,000 files with each device
randomly selecting 10,000 files to store. Thus, when PND
A and B synchronize, on average they have 5,000 common
files. We vary the fraction of common files with different ver-
sion numbers from 0 to 5,000. Figure 12 shows the packet
overhead for A and B to determine the set of files to trans-
fer. Broadside generates approximately half the overhead of
perfect knowledge because perfect knowledge needs to send
an evaluation for each file difference, including those not in
common. For Broadside, the overhead depends on the num-
ber of files present on A and the fraction of common files
with different versions. With g = 500, 20 packets cover all
10,000 files, each with a match filter response. Broadside
also requires a message per round containing the possible
matching file records. The visible steps in Broadside occur
where the number of matching file records overflows the ca-
pacity of a packet. As the number of files on A and B is
constant, the overhead for full set is also constant, whereas
for perfect knowledge, the packet overhead increases as a
function of the number of differing entries.

Figure 12 also shows Broadside first, which represents the
mean number of packets expected to be sent to find a file for
transfer. When 500 of the 5,000 common files have different

Figure 13: Fraction of PNDs with content after 15
minutes versus fraction of vehicles with PND.

local versions, on average 25 files for transfer will be found
with only 3 packets. Provided 20 or more common files
with different versions exist, on average, a file to transfer
will be discovered after 3 packets. In the worst-case, when
all common files have the same version and so no files need
transferring, 60 packets are required.

Finally, the set reconciliation algorithms evaluated will de-
tect all differing files. Broadside, on the other hand, can fail
to detect a differing file, with probability 0.000154 per file.
Randomly permuting the group membership means that any
missed files should be detected subsequently with high prob-
ability.

5.6 Epidemic distribution evaluation
Properties of epidemic distribution in vehicular networks

have been studied elsewhere [18]. This paper focuses on
the systems aspects of the device-to-device protocols used
to enable content transfer between devices, and how these
perform in the real world. However, for completeness, we
also provide some brief results looking at the impact of PND
density on the epidemic distribution of content. We ran an
experiment using a mobility trace generated by Los Alamos
National Laboratories (LANL) for the city of Portland, Ore-
gon. It was generated using TRANSIMS [24, 4] and is be-
lieved to be realistic of the traffic flow in downtown Portland.
The traces incorporate per-vehicle activity flows, generated
from census and other information to increase the accuracy
of the trace. The trace covers 15 minutes from 8:00AM on a
weekday and covers a 3km by 7km area of downtown Port-
land straddling the Willamette River, covering both urban
streets and several freeways. The trace provides position in-
formation for 16,529 vehicles in total, e.g. cars, trucks and
buses, and is updated each second. The average velocity for
moving vehicles is 54km/h.

We vary the fraction of vehicles carrying a PND and ran-
domly select a further set of vehicles to act as mobile seeds
carrying a PND with the seeded content. Each seed is pre-
loaded with a file required by all devices. To transfer the
content between two PNDs, the two devices must be within
150 meters for 20 seconds. We assume a per-second transfer
rate, meaning if a device is in contact with another PND
for k seconds then k/20th of the content is transferred. A
PND can store partially transferred content, and can resume
transfer when another PND with the content is encountered.

Conservatively, the PNDs do not become content sources
until they have the full content. A contact duration of 20
seconds at less than a 150 meters, which is consistent with
the results shown earlier, should enable us to transfer ap-
proximately 20MB. We ran the 15 minute trace and then
determined the fraction of PNDs with the full content, ex-
cluding the original seeds. The vehicles carrying the seed
PNDs are selected randomly, and are not guaranteed to be
present in the trace for the full 15 minutes. In fact, the ma-
jority of vehicles are present for less than the full 15 minutes.

Figure 131 shows the fraction of PNDs with the content
versus the fraction of enabled vehicles carrying a PND (ex-
cluding seed PNDs). We varied the penetration rate from
0.39% to 12.5% based on the observation that in Western
Europe 1 in 4 vehicle owners currently have a PND device,
and one manufacturer has approximately 50% market share.
We ran the experiment with 4, 12 and 24 seeds, which would
be conservative if the seed vehicles were buses or taxis. Each
experiment was run 20 times and the median, with 5th and
95th percentile error bars, is shown. The results demon-
strate, even over just 15 minutes, at low penetration rates
and with a small number of seed devices, that a significant
fraction of the PNDs can receive the content. This makes
us believe, having demonstrated the feasibility of device-to-
device transfer over WiFi, that it could be used as the basis
for a next generation delay tolerant content distribution sys-
tem.

6. RELATED WORK
A number of studies have looked at the performance and

characterization of wireless links in vehicular networks, in-
cluding [10, 13, 19, 11, 23, 22]. Several of these stud-
ies have identified the need to design protocols optimized
for vehicular networks. A number of small-scale vehicle-to-
infrastructure testbeds [10, 19, 6, 26, 3, 2] have been used
to investigate the feasibility of exploiting fixed access points
(APs) to provide access to the Internet etc to mobile de-
vices. Broadside is designed to support efficient device-to-
device content transfer, either between a mobile device and
a static access point or between moving devices.

Cabernet [10] is the most related work done concurrently
with this work. It aims to exploit short-lived IP connec-
tions from moving vehicles to Internet hosts via open ac-
cess points. Cabernet tunes IP and 802.11 timeouts to sup-
port IP over 802.11 infrastructure networks, and proposes
the CTP transport protocol which hides network and ad-
dress changes from applications. Cabernet uses a fixed data
rate of 11Mbps and claims that there is no advantage from
using higher data rates. The Broadside results show that
data rates above 11Mbps, up to and including 54Mbps on
802.11a/g, do yield significant benefit when channel condi-
tions permit. Broadside does not use IP and is not designed
to support general Internet access via an AP: instead Broad-
side provides an efficient content discovery and file transfer
protocol.

Prior work has characterized the connection durations as
being short, with an entry, production and exit phase [13,
23]. We also see theses in the reported results, with higher
loss rates in the entry and exit phases. Broadside attempts
to minimize the time that it takes to discover the content to

1Thanks to Giovanni Pau (UCLA) who provided the data
for this chart.

be transferred, allowing it to exploit the production phase
to achieve maximum throughput. Unlike much prior work,
Broadside has been especially designed to handle the link
characteristics in vehicular networks.

There are proposals for 802.11p, based on 802.11a and
802.11e, aimed specifically at supporting vehicle networks in
the licensed 5.9GHz band. The 802.11p MAC aims to reduce
startup delays [9] and reduce the time taken to establish a
link [14]. As 802.11p chipsets are not yet available, we used
802.11a to understand how Broadside works at frequencies
similar to those used in 802.11p.

In overlays, algorithms have been proposed to identifying
the set of blocks belonging to a file that two nodes have in
common [7]. Our use of Bloom filters was inspired by this
work [7] as has much of the work on using Bloom filters
in wireless and distributed systems. However, Broadside
addresses a more complex problem by incorporating version
numbers for the file; determining which blocks two devices
have in common does not use version numbers. If devices
have a large number of files in common, but all with the
same version number, simply detecting common files will
create significant overhead.

Set reconciliation algorithms, e.g. [20], ensure that two
devices, after synchronization, have the same set of files.
In contrast, in Broadside each device has an arbitrary set
of files, and the content discovery algorithm identifies the
common files with different versions. Further, the files are
found incrementally, and with high probability the first is
identified after only a few round trips.

The Bayou [25] system provided a weak consistency model
between replicated objects. Write operations could be per-
formed opportunistically at each replica, and the reconcili-
ation is performed to merge the updates. The approach is
based on maintaining logs of write updates and then merging
these logs. The Broadside content discovery efficiently iden-
tifies which file (object) is the most recent based on global
version numbers, rather than attempting to perform recon-
ciliation across diverged replicas.

Finally, there have been proposals for doing epidemic-
based information distribution in vehicular networks, es-
pecially for small size content to support intelligent trans-
port systems. Examining content distribution has predom-
inantly been evaluated using simulation [15, 18], and the
performance of these systems often differs dramatically be-
tween simulation and the real world. The most related work
is CarTorrent [16], which is based on BitTorrent-like file
dissemination. It is evaluated on a real testbed and uses
multi-hop routing (AODV) with TCP to fetch file blocks
from other vehicles with the content. In low density envi-
ronments multi-hop routing will be difficult. Our work is
complementary, and indeed, a CarTorrent-like application
could be easily built on top of Broadside and would be able
to exploit the performance Broadside achieves. CodeTor-
rent [18] investigates file sharing over a VANET using net-
work coded content and promiscuous caching of overheard
content. CodeTorrent could benefit from using Broadside to
transfer coded blocks between devices, and CodeTorrent has
only been evaluated in simulations.

7. CONCLUSION
We have described and evaluated Broadside, a practical

device-to-device content transfer system. Broadside allows
two devices, when they come into communication range, to

identify common files with differing versions and then to
efficiently transfer the latest version between the devices.
Broadside is generic, and we have motivated and evaluated
Broadside in the context of PNDs. The results show that
Broadside is effective at exploiting short connection periods
to transfer significant amounts of data. This is achieved
through optimizing the link-level discovery, providing algo-
rithms for efficiently identifying the content to be trans-
ferred and through the use of our own data transfer protocol
that removes the need to use TCP/IP. The next generation
of PND devices could use Broadside to enable an efficient
delay-tolerant content distribution network.

Acknowledgements
We thank Giovanni Pau (UCLA) for providing the data in
Figure 13. We would also like to thank the anonymous re-
viewers and our shepherd, Boon Thau Loo, for their feed-
back. We also thank Dinan Gunawardena, Ilias Leontiadis,
Gustavo Marfia, Simon Schubert, Peter Wheeler and Georg
Wittenburg for helping run the experiments. We would also
like to thank Jim Turner.

8. REFERENCES
[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung.

Network information flow. IEEE Transactions on
Information Theory, 46(4), 2000.

[2] A. Balasubramanian, R. Mahajan, A. Venkataramani,
B. N. Levine, and J. Zahorjan. Interactive WiFi
Connectivity For Moving Vehicles. In Sigcomm’08,
Sept. 2008.

[3] N. Banerjee, M. D. Corner, D. Towsley, and B. N.
Levine. Relays, Meshes, Base Stations: Enhancing
Mobile Networks with Infrastructure. In ACM
MobiCom’08.

[4] C. Barrett, R. Beckman, K. Berkbigler, K. Bisset,
B. Bush, K. Campbell, S. Eubank, K. Henson,
J. Hurford, D. Kubicek, et al. Transims:
Transportation analysis simulation system. Los
Alamos National Laboratory, 2002.

[5] B. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[6] V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and
S. Madden. A measurement study of vehicular
internet access using in situ Wi-Fi networks. In ACM
MobiCom’06.

[7] J. W. Byers, J. Considine, M. Mitzenmacher, and
S. Rost. Informed content delivery across adaptive
overlay networks. In ACM Sigcomm, 2002.

[8] J. W. Byers, M. Luby, M. Mitzenmacher, and
A. Rege. A digital fountain approach to reliable
distribution of bulk data. In ACM SIGCOMM, 1998.

[9] S. Eichler. Performance Evaluation of the IEEE
802.11p WAVE Communication Standard. In IEEE
Vehicular Technology Conference, 2007.

[10] J. Eriksson, H. Balakrishnan, and S. Madden.
Cabernet: Vehicular Content Delivery Using WiFi. In
ACM MobiCom’08.

[11] R. Gass, J. Scott, and C. Diot. Measurements of
in-motion 802.11 networking. In WMCSA, 2006.

[12] C. Gkantsidis and P. R. Rodriguez. Network coding
for large scale content distribution. In IEEE Infocom,
2005.

[13] D. Hadaller, S. Keshav, T. Brecht, and S. Agarwal.
Vehicular opportunistic communication under the
microscope. In ACM MobiSys, 2007.

[14] D. Jiang and L. Delgrossi. IEEE 802.11p: Towards an
international standard for wireless access in vehicular
environments. In VTC, Spring 2008.

[15] A. Klemm, C. Lindemann, and O. Waldhorst. A
special-purpose peer-to-peer file sharing system for
mobile ad hoc networks. In VTC, Fall 2003.

[16] K. Lee, S.-H. Lee, R. Cheung, U. Lee, and M. Gerla.
First experience with cartorrent in a real vehicular ad
hoc network testbed. In MOVE, 2007.

[17] S.-H. Lee, U. Lee, K.-W. Lee, and M. Gerla. Content
distribution in vanets using network coding: The
effect of disk I/O and processing O/H. 2008.

[18] U. Lee, J.-S. Park, J. Yeh, G. Pau, and M. Gerla.
Code torrent: content distribution using network
coding in vanet. In MobiShare ’06: Proceedings of the
1st international workshop on Decentralized resource
sharing in mobile computing and networking, pages
1–5, New York, NY, USA, 2006. ACM.

[19] R. Mahajan, J. Zahorjan, and B. Zill. Understanding
WiFi-based connectivity from moving vehicle. In
IMC’07.

[20] Y. Minsky, A. Trachtenberg, and R. Zippel. Set
reconciliation with nearly optimal communication
complexity. IEEE Transactions on Information
Theory, 49(9), 2003.

[21] M. Mitzenmacher. Compressed Bloom filters.
IEEE/ACM Transactions on Networking, 10(5), 2002.

[22] J. Ott and D. Kutscher. A disconnection-tolerant
transport for drive-thru internet environments. In
Infocom 2005.

[23] J. Ott and D. Kutscher. Drive-thru Internet: IEEE
802.11b for “automobile” users. In Infocom 2004.

[24] L. Smith, R. Beckman, and K. Baggerly. Transims:
Transportation analysis and simulation system.
Technical report, LA-UR–95-1641, Los Alamos
National Lab., 1995.

[25] D. B. Terry, M. M. Theimer, K. Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser. Managing
update conflicts in Bayou, a weakly connected
replicated storage system. In ACM SOSP, 1995.

[26] X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and
H. Zhang. Study of a bus-based disruption tolerant
network: Mobility modeling and impact on routing. In
ACM Mobicom’07.

	Introduction
	Background
	Broadside system overview
	Broadside
	Content Discovery
	Bulk transfer protocol

	Evaluation
	Transport protocols
	Impact of packet size and ACK overhead
	Impact of changing frequency band
	Antenna location impact
	Content discovery evaluation
	Epidemic distribution evaluation

	Related work
	Conclusion
	References

