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ABSTRACT
Peer-to-peer (p2p) video-on-demand (VoD) is increasingly popu-
lar with Internet users. Currently deployed pure p2p VoD systems
provide poor general performance and they lack advanced features
such as fast forward and seeking to arbitrary points. Peer-assisted
VoD systems can provide such services, but they require very well
provisioned source servers (or server farms).

We propose BulletMedia, a system that uses proactive caching

to attempt to provide advanced features without requiring a well

provisioned server. In BulletMedia, blocks are altruistically repli-

cated by peers not to aid immediate playback but to simply in-

crease the number of replicas of each block. This helps ensure

that blocks are available in-overlay and reduces dependence on

the source. BulletMedia combines a traditional overlay mesh ap-

proach with a structured overlay. The overlay mesh is used to

fetch blocks at a high rate, while the structured overlay is used

to enable efficient block discovery and to control block replica-

tion. Initial experimental results from a prototype BulletMedia

implementation demonstrate that it can both effectively control

in-overlay block replication and can efficiently use these replicas

to perform forward seeks.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; H.4.3 [Information Systems Applications]: Com-
munications Applications

General Terms
Experimentation, Performance
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1. INTRODUCTION
Peer-to-peer (p2p) video-on-demand (VoD) services are

becoming increasingly popular. These services have the
potential to revolutionize how people view media content.
However, the current VoD services offer a different play-
back experience from download-based systems, like BitTor-
rent. Download-based systems require the content to be
downloaded in its entirety, but once downloaded provide
the freedom to fast-forward, rewind and seek to arbitrary
locations in the content during playback. P2p VoD systems
do not support this kind of interactive playback: they de-
pend on being able to spend minutes caching content before
commencing playback and then rely on contiguous playback
from the beginning of the media to the end.

To build p2p VoD systems that support these advanced
operations, like fast-forward and seeking to arbitrary play
points, is challenging. When a peer changes its play point
the peer needs to rapidly discover other peers that have
replicated the content blocks it requires. If it cannot find the
blocks, they need to be fetched from the source server. In
general, in a fully-centralized approach, if there are N users
then this requires O(N) bandwidth at the server. In a poorly
designed p2p VoD systems, where peers can perform random
seeks to any playback point, then the required bandwidth
at the source can still be O(N) under certain conditions.

The main contribution of this work is the initial design
and prototype implementation of a p2p VoD system with
DVD-like features called BulletMedia. As with other p2p
VoD systems the content being distributed is decomposed
into a set of equal size blocks. The basic concept behind
BulletMedia is to ensure that all blocks are replicated in-
overlay, regardless of when the set of active peers in the
overlay will require them to support current playback. This
relies on peers altruistically fetching and storing blocks that
they do not require for immediate playback. Increasing the
availability of blocks in-overlay reduces dependency on the



source server and reduces the latency of resuming playback
when a peer performs a seek operation.

Key challenges for BulletMedia are controlling which block
should be replicated, when peers have spare bandwidth, and
supporting efficient block discovery. If a block is not repli-
cated or cannot be discovered then the peer is forced to
fetch it from the source server. BulletMedia uses proactive
caching to achieve this and leverages both a mesh and struc-
tured overlay. The mesh overlay is used to fetch blocks under
normal playback. The structured overlay is used to control
both which blocks are altruistically replicated, based on the
current number of replicas of a block and to allow peers
to rapidly discover the location of blocks stored in-overlay.
In order to demonstrate the feasibility of our approach we
present some initial results gathered using a prototype im-
plementation of BulletMedia which demonstrates the effec-
tiveness of BulletMedia at both controlling block replication
and at supporting forward seek operations during playback.

The rest of this paper is organized as follows. The next
section describes the design of BulletMedia. In Section 3
we present our experimental results. Section 4 overviews
the related work, while Section 5 concludes the paper and
outlines future work.

2. DESIGN
We assume that initially there is a source server that con-

tains the entire media file, decomposed into blocks. End-
users run an instance of a p2p media player on their endsys-
tems and specify the media file they would like to play. To
join the overlay that peer can either contact the source server
or contact any other arbitrary peer in the system. Further,
we assume that peers can join and fail at any time. After
as small a delay as possible the media playback commences.
Once playback has commenced the client supports advanced
operations like random seeks, fast-forwarding and rewind-
ing.

Next, we describe the main BulletMedia components: the
high-bandwidth overlay mesh and the structured overlay
used to enable proactive caching and advanced operations.

2.1 Overlay mesh
The overlay mesh is built on top of Bullet′ [10] and Ran-

Sub [11]. As shown in Figure 1, each peer is connected to a
number of neighbors in the mesh. The set of neighbors send-
ing data to a peer are senders, while those retrieving data
from it are receivers. BulletMedia is pull-based; a peer first
learns of available blocks at its senders and makes explicit
requests for required blocks to achieve high throughput.

Neighbor discovery is performed using RanSub, which al-
lows sampling of system-wide state. RanSub acts as a sim-
ple control plane, building and maintaining a spanning tree
across all peers. In BulletMedia this control tree is used
to distribute overlay membership information. In particu-
lar, when a peer joins BulletMedia, it first joins the RanSub
control tree. The peer starts to periodically receive informa-
tion about other peers selected uniformly at random from
the set of all peers which are part of the overlay. As well
as discovering the identity of the peers each peer also finds
coarse-grain information about the blocks stored at those
peers.

The information provided by RanSub allows BulletMedia
peers to pick an initial set of senders on joining. Once joined
BulletMedia peers can dynamically change the set of neigh-
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Figure 1: Overview of overlay mesh creation in Bul-

letMedia.

bors using a neighbor set sizing algorithm to attempt to
maximize the received and forwarded bandwidth. In ad-
dition, slow senders and receivers getting a small fraction
of bandwidth are periodically disconnected to further foster
mesh adaptation to dynamic network conditions. A dynamic
flow control algorithm determines the maximum amount of
outstanding data requested from each sender. BulletMedia
peers make entirely local decisions; e.g., each receiver tries
to maximize its bandwidth utilization.

Each peer is configured with a small fixed-size ordered
playback buffer and a content cache. The playback buffer
is used to store blocks that are required imminently by the
video codec. Blocks currently in the playback buffer as well
as already used blocks and blocks that will be used in the
future are stored in the content cache. The head of the play-
back buffer is the play point and is the next block required by
the video codec to continue playback. Over time, the mem-
bers of a peer’s neighbor set will mostly have overlapping
play points.

To monitor the play back quality, each peer locally mea-
sures a continuity index (ci) which captures the fraction of
blocks delivered in time over a small window (e.g. 10 blocks)
before the play point. If ci drops below a predetermined
threshold then playback is paused, while more blocks are
retrieved.

The BulletMedia flow control algorithm controls when
blocks can be retrieved from each sender. The block to
be requested is selected randomly from the set of blocks
with the lowest availability across all senders; referred to as
the rarest random strategy. This strategy has been shown
to perform better than other strategies [10]. In addition,
a receiver pays attention to the impending block delivery
deadline to the codec, and explicitly requests a few blocks
that are adjacent to the play point. Small block sizes (e.g.
16 kB) are used to allow the mesh to achieve high network
bandwidth utilization.

2.2 Structured overlay
In general peers select a set of senders that provide high

download rates and contain blocks required for playback
which removes the need to fetch blocks from the source.

If a peer moves its play point, for example by perform-
ing a seek operation, it then needs to rapidly discover and
fetch the blocks required for the playback buffer. Playback
cannot commence until enough blocks have been fetched. If
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Figure 2: Caching and proactive placement of

chunks in BulletMedia. S is the source node; the

playing buffers are lightly-colored, while the dark-

shaded blocks represent cached content.

the senders of the peer cannot provide the blocks, the peer
fetches the blocks from the content source server (e.g., peer
3 in Figure 2). If many peers are concurrently moving their
play points this can lead to high peak-bandwidth demands
on the source server.

In order to address this issue BulletMedia uses a dis-
tributed content discovery service. A Distributed Hash Ta-
ble (DHT) is used to store meta-data about content loca-
tion within the peers of the mesh overlay. The DHT does
not store meta-data at a block granularity as these are small
and maintaining meta-data at this granularity incurs a high
overhead. Instead, sets of contiguous blocks are determin-
istically grouped into chunks (e.g., 100 blocks in a chunk).
Each chunk is assigned a unique key, chunkId, which is gen-
erated by hashing < contentname, chunknumber >. This
ensures that any peer, given that it knows the number of
blocks per chunk, can determine the chunkId of the chunk
that contains any specific block.

Each peer monitors its local content cache and when all
blocks associated with a particular chunkId are present the
peer inserts an entry into the DHT. The entry has the chunkId
as the key, and the peer’s IP address as the value. All in-
serted meta-data is tagged with a time-to-live to ensure that
it times out appropriately.

When a peer performs a seek operation, thereby moving
the play point, it first checks the locally available sender set
block maps. If it is unable to fetch the required blocks from
its sender set, the peer determines the chunkId of the block
and queries the DHT. The DHT returns a (bounded) set
of peers associated with that chunkId. The peer randomly
chooses one or more of the returned peers and adds them to
the sender set.

This process enables peers to rapidly discover new peers
with appropriate blocks, reducing the dependency on the
source server.

As described earlier, chunks are used to ensure that the
overhead of maintaining the meta-data in the DHT is rea-
sonable. Using chunks has an additional advantage: once a
peer has discovered a few peers with the chunks it needs, it is
able to retrieve multiple blocks from each peer, aggregating
the peering (e.g. TCP three-way handshake and slow-start)
overheads.

2.3 Managing the content cache
We assume that the peers are able to cache the entire set

of chunks associated with the current media being played.
If peers have smaller caches then they can query the DHT
to discover the number of other peers that have a particu-
lar chunk replicated. Based on the peer’s local play point
and the numbers of replicas of each chunk a peer can decide
which blocks to delete to minimize impact on block avail-
ability.

Simply populating each peer’s content cache with content
required for imminent playback and blocks already played is
insufficient. If a peer moves its play point beyond the max-
imum play points of all other participating peers then the
peer will be forced to fetch content from the source server.

BulletMedia uses proactive caching of blocks: the aim is
to ensure all content blocks are replicated at least k times
system-wide, where a typical value of k is 4. This is similar
in spirit to the approach taken by some P2P storage systems,
e.g., TotalRecall [2].

Each peer uses its spare bandwidth to prefetch blocks
in advance. These blocks are not required for imminent
playback but are altruistically fetched to ensure diversity of
blocks stored in the overlay.

When a peer believes that it has spare incoming band-
width, for example because it has sufficient blocks cached
to populate the playback buffer, it must determine which
blocks it should prefetch in order to ensure good diversity
across the overlay.

To achieve this a peer examines its local content cache
and determines the set of chunkIds for chunks it is currently
not replicating. It then selects chunkIds at random from
this set, and performs a lookup in the DHT. The DHT sim-
ply includes a count of the number of peers replicating the
chunk in the response. If the number of replicas is below a
pre-defined level (e.g., 4) then the peer begins to retrieve the
blocks associated with the chunk. If not, the peer chooses
another chunkId at random and queries it. This process pro-
ceeds until a chunk is found that requires more replication.
If no chunk is found that requires more replicas, then the
peer fetches blocks based on it local playback requirements.
Otherwise (the chunk is under-replicated), the peer knows
the estimate of number of replicas of a chunk in the mesh
and the identities of the peers storing them. If there are
one or more replicas, then the peer adds these peers to the
sender set. If possible, the peer avoids the source (content
server) to reduce its sending load.

When a peer is altruistically fetching blocks if it deter-
mines that blocks are required to support the current play
back, the peer stops fetching blocks for the selected chunk.
The content server also prioritizes delivery of blocks required
for imminent playback over blocks that are being fetched to
increase a chunks replication factor in the overlay.

3. EVALUATION
In order to evaluate BulletMedia we have created a proto-

type implementation using Mace [13], a framework for im-
plementing distributed systems. The mesh overlay is based
on the Bullet’ implementation in Mace and the DHT is an
implementation of Pastry [14], also implemented in Mace.

The prototype implementation is currently limited to dis-
seminating a single movie and supports seeks to arbitrary
play points within the movie. We intend to add more func-



tionally, such as fast-forward in the future.
Integral to the design of BulletMedia is the ability for

peers to determine if they have spare bandwidth. Deter-
mining link capacities is difficult, and the prototype imple-
mentation uses a number of simple heuristics to determine
if there is spare bandwidth. We believe that in general for
VoD applications the ability for peers to determine spare
link capacities will be very powerful. Beside being useful for
deciding when to prefetch blocks, available bandwidth esti-
mation can enable features like admission control. While the
simple heuristics are effective, we intend to investigate this
aspect further in the future. Unlike the peers, the source
server manages its outbound bandwidth by statically al-
locating two times the playback bandwidth for providing
blocks for imminent playback and using the rest for sup-
porting altruistic prefetching of blocks.

In our evaluation, we examine 1) whether BulletMedia
peers replicate the file the specified number of times, and
2) the system’s ability to accommodate a large number of
random seek requests without stalling the video playback.

3.1 Experimental Setup
We conducted our experiments using the ModelNet [15]

network emulator. We make use of 8 dual 3.4-Ghz Pentium-
4s running Linux 2.6.17 that are interconnected by a 1-
Gbps Ethernet switch. We multiplex one hundred logical
end peers running our applications across the 8 Linux ma-
chines (slightly over 12 instances on average per machine).
ModelNet routes packets from the end systems through an
emulator responsible for accurately emulating the hop-by-
hop delay, bandwidth, and congestion of a given network
topology; a 3.4-Ghz Pentium-4 running FreeBSD 4.9 served
as the emulator for these experiments.

For all our experiments, we use a 5,000-node INET [4]
topology that we further annotate with bandwidth capaci-
ties for each link. We keep the latencies generated by the
topology generator; the average network RTT is 130ms. We
randomly assign our participant peers to act as clients con-
nected to one-degree stub nodes in the topology. We ran-
domly select one of these participants to act as the video
source and set its outbound bandwidth to 14 Mbps. We
set all links except the client-stub (access) links to be 100
Mbps, with latency chosen by the INET topology generator.
Other participants have 2 Mbps inbound/outbound access
link bandwidth. We use TCP for all data and control mes-
sages.

The movie file is 50 MB with the video rate of 600 kbps.
The size of the playing buffer is 100 blocks, each block being
16 kB in size. We set the chunk size to 100 blocks. As
a bigger file would take longer to be replicate, varying the
replication factor (k) might be useful. In our experiments we
set k = 4, giving BulletMedia a chance to replicate the file
before random seeks begin. The default minimum playing
rate is set to 0.8; this means that we assume that the video
can be viewed only if more than 80 percent of the blocks are
delivered to the codec.

3.2 Random Seek Performance
In this section, we demonstrate the ability of our system to

support random seeks under conditions that severely strain
traditional systems. To subject the system to an initial flash
crowd, all (hundred) peers start playing simultaneously from
the beginning of the movie. To effect a severe random seek
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Figure 3: Performance in a random seek scenario.
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Figure 4: Average block replication factor over time

(baseline)

scenario, at t = 200 seconds we allow 50 peers (half of the
system) to perform forward seeks to a random part of the
movie that has not been played yet and then stay in the
play mode for a random amount of time. Peers performed
two or three seeks and stayed in play mode between seeks
randomly from 40 to 60 seconds. Our experiments last 350
seconds.

Figure 3 shows the fraction of peers that can play (ide-
ally 1.0) over time. Our reference point is the baseline sys-
tem, namely BulletMedia that does not employ proactive
caching and instead only lets receivers advertise content they
have played out. The second line is for BulletMedia with
proactive caching. We see that both systems take about 20
seconds to cache the initial blocks required for the codec
and then have very little difficulty in accommodating all re-
ceivers. The source is pushing data at 1.2 Mbps and has 10
Mbps used for serving individual block requests. Once ran-
dom seeks begin, the peers in the baseline system have great
difficulty locating and downloading content as the source
has only 10 slots for downloaders. There is some overlap
between random seek points though, so peers gradually self-
organize over time to improve each other’s performance.
With proactive caching however, more than 90 percent of
receivers quickly start playing after the random seek. The
seek latency resembles the initial join time, where approx-
imately hundred blocks have to be cached for movie play
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Figure 5: Average block replication factor over time

(Proactive caching, target replication factor is 4).
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Figure 6: Percentage of file covered by replication over

time.

to begin. This figure clearly shows the benefits of proactive
caching and the ability of our system to quickly locate and
retrieve blocks. The fraction of peers that can play after
seeks is not at the maximum due to a smaller number of
viable senders (on average each chunk is replicated 3 times
at non-source peers); downloading using TCP from just a
few senders over a wide-area topology results in occasional
stalls. In addition, each sender has just about enough out-
bound bandwidth to support its mesh-based receivers and
the downloads that are redirected to it via the DHT (three,
on average).

To shed more light on the observed performance, we plot
the average block replication factor for the baseline and Bul-
letMedia cases in Figures 4 and 5, respectively. We also show
the fraction of the file that is replicated system-wide in Fig-
ure 6. These figures show that the baseline system does not
manage to replicate the entire file before the seeks begin (it
does not even attempt to). On the other hand, BulletMedia
replicates each block steadily, with low standard deviation
(shown as error bars in Figure 5) and quickly reaches the
desired replication factor of 4 (including the file present at
the source, which why is the line in Figure 5 starts at 1).
Even though peers make random replication choices, 80 per-
cent of the file is replicated slightly after hundred seconds,
with the entire file being covered at 150 seconds.

4. RELATED WORK
There has been considerable interest in overlay-based me-

dia distribution including live-streaming [3, 7, 9] and file
distribution [6, 10, 12].

Recently, most interest has been in overlay-based VoD (or
near-VoD) using unstructured overlays, for example Cool-
Stream [16], GridCast [5], RedCarpet [1]. Most of these
modify the block fetching policies used in file distribution
systems to enable contiguous playback of content. Bullet-
Media differs from these approaches in that it actively at-
tempts to replicate all blocks from the media file in the over-
lay: it provides mechanisms (using a structured overlay) to
control which blocks are replicated and provides an efficient
technique for discovering these blocks. Subsequently, Bul-
letMedia can more efficiently support advanced operations
like seeking.

Peer-assisted VoD [8] attempts to provide VoD function-
ality by relying on the source server (or server farm) hav-
ing sufficient bandwidth to essentially support all users, and
then where possible to use P2P techniques to reduce the
server load. Peer-assisted VoD can support seek function-
ality, but requires significant bandwidth resources at the
server. BulletMedia attempts to provide the functionality
with lower server bandwidth overheads.

A recent study of a deployed large-scale VoD system [5]
shows, when access is provided to a large number films, a
heavy-tail effect for content popularity. The implication is
that the system needs to support a large number of concur-
rent streams, but with most having a small number of active
subscribers. In future work we intend to examine how easy
it is to extend BulletMedia to manage multiple media files
concurrently.

5. CONCLUSION AND FUTURE WORK
P2p VoD systems that provide advanced functionality, like

fast-forwarding and seeking, can lead to high potential peak
bandwidth at the source when peers change play points. In
this paper we advocate using proactive in-overlay caching,
utilizing spare bandwidth to increase per-block replication
within the overlay. To achieve this BulletMedia uses both
a mesh overlay and a structured overlay. The mesh overlay
is used to fetch blocks under normal operation. The struc-
tured overlay is leveraged to provide both rapid discovery of
peers with required blocks when peers perform seeks and to
control which blocks peers should replicate. Initial results
demonstrate that this is a very promising approach.

Future work focuses on improving the performance of Bul-
letMedia, and in particular bandwidth management. As
part of this we are investigating admission control: allowing
peers to only join the overlay when there is sufficient band-
width available to ensure that the current members of the
overlay will not experience any negative impact.
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