
Proximity neighbor selection in tree-based structured peer-to-peer overlays

Miguel Castro1, Peter Druschel2, Y. Charlie Hu3 and Antony Rowstron1

1Microsoft Research, 7 J J Thomson Avenue, Cambridge, CB3 0FB, UK.
2Rice University, 6100 Main Street, MS-132, Houston, TX 77005, USA.
3Purdue University, 1285 EE Building, West Lafayette, IN 47907, USA.

Technical Report
MSR-TR-2003-52

Structured peer-to-peer (p2p) overlay networks provide a useful substrate for building distributed applications. They
assign object keys to overlay nodes and provide a primitive to route a message to the node responsible for a key.
Proximity neighbor selection (PNS) can be used to achieve both low delay routes and low bandwidth usage but
it introduces high overhead. This paper presents a detailed evaluation of PNS and heuristic approximations. We
describe a new heuristic called constrained gossiping (PNS-CG) and show that it achieves performance similar to
perfect PNS with low overhead. We also compare constrained gossiping with previous heuristics and show that it
achieves better performance with lower overhead.

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1 Introduction

Structured p2p overlay networks like CAN, Chord, Pastry,
Tapestry, and others [1, 2, 3, 4, 5, 6] provide a useful sub-
strate for building distributed applications [7, 8, 9, 10] be-
cause they are scalable, self-organizing, and reliable. They
assign application-defined keys to overlay nodes and provide
a primitive to route a message to the node responsible for a
key. Structured overlays conform to a specific graph structure
that allows them to route in O(log N) hops while maintain-
ing at most O(log N) routing state where N is the number of
nodes in the overlay.

It is important for overlay routing to exploit proximity in
the underlying network. Otherwise, each overlay hop has an
expected delay equal to the average delay between a pair of
random overlay nodes, which stretches route delay by a factor
equal to the number of overlay hops and increases the stress
in the underlying network links. There are several techniques
for proximity-aware routing proposed in the literature [11, 4,
1, 3, 10, 12]. Recent work [13, 14, 15] identifies proximity
neighbor selection (PNS) as the most promising technique.

PNS can be used to achieve low delay routes and low band-
width usage. It selects routing state entries for each node from
among the closest nodes in the underlying topology that satisfy
constraints required for overlay routing. PRR [11] used PNS
first but it assumed knowledge of the delay between each node
and all the nodes that could potentially be in that nodes rout-
ing state, which is expensive to obtain in large-scale dynamic
systems. Tapestry [4, 10] and Pastry [3] proposed heuristics to
approximate PNS requiring less delay measurements.

This paper presents a detailed evaluation of PNS and two
heuristic approximations. We describe a new heuristic called
constrained gossiping (PNS-CG) that achieves performance
very close to perfect PNS with lower overhead than the heuris-
tics proposed for Tapestry and Pastry. In particular, it reduces
the number of messages and bandwidth required by the orig-
inal Pastry heuristic [3] and eliminates Pastry’s neighborhood
set. The original Pastry heuristic assumed an oracle for find-
ing a nearby seed node for joining. PNS-CG provides an effi-
cient algorithm that takes a random overlay node and returns a
nearby seed node for joining. This algorithm is interesting be-
cause it does not require any additional state beyond that which
is already maintained for overlay routing. We describe con-
strained gossiping in the context of Pastry but it is applicable
to other tree-based structured overlays like PRR and Tapestry.

We present a comparison between PNS and proximity-
unaware routing based on results obtained via analysis and
simulation with three realistic topology models. Our analy-
sis differs from previous ones [11, 10] by providing precise
delay stretch estimates instead of asymptotic bounds.

We also present a detailed comparison between PNS, PNS-
CG, and PNS(K) [15] on Pastry. This comparison studies both
the extent to which the two heuristics can approximate PNS
and the overhead that they introduce. It is based on simula-

tion results obtained with the three topology models, varying
overlay sizes and varying router parameters (e.g., the number
of bits fixed by each overlay routing hop). The results indi-
cate that PNS-CG can achieve performance closer to PNS than
PNS(K) and with lower overhead.

The rest of this paper is organized as follows. We begin
with an overview of Pastry with perfect PNS in Section 2 then
section 3 presents constrained gossiping. Section 4 presents
an evaluation of PNS, constrained gossiping, and PNS(K). We
conclude in Section 5.

2 Perfect PNS in Pastry

Each Pastry node has a unique nodeId that is selected ran-
domly with uniform probability from a circular 128-bit identi-
fier space. Keys are also selected from the same space and the
root node for a key is the live node whose nodeId is numeri-
cally closest to the key. Pastry provides a primitive to send a
message to a destination key. These messages are delivered to
the key’s root node.

2.1 Node state

The routing state maintained by each node consists of the rout-
ing table and the leaf set. Each entry in the routing state con-
tains the nodeId and IP address of a node. NodeIds and keys
are interpreted as unsigned integers in base 2b (where b is a
parameter with typical value 4).

The routing table is a matrix with 128/b rows and 2b

columns. The entry in row r and column c of the routing
table contains a nodeId that shares the first r digits with the
local node’s nodeId, and has the (r + 1)th digit equal to c. If
there is no such nodeId, the entry is left empty. The uniform
random distribution of nodeIds ensures that only log2bN rows
have non-empty entries on average. Figure 1 depicts a sample
routing table. This routing table is similar to those used by
PRR [11] and Tapestry [4].

The leaf set contains the l/2 closest nodeIds clockwise from
the local nodeId and the l/2 closest nodeIds counterclockwise.
The leaf set ensures reliable message delivery and is used to
store replicas of application objects.

2.2 Message routing

At each routing step, the local node normally forwards the
message to a node whose nodeId shares a prefix with the key
that is at least one digit longer than the prefix that the key
shares with the local node’s nodeId. If no such node is known,
the message is forwarded to a node whose nodeId is numeri-
cally closer to the key and shares a prefix with the key at least
as long. If there is no such node, the message is delivered
to the local node. Figure 2 shows the path of a message and
Figure 3 shows the pseudo code for the routing algorithm.

1

0
x

1
x

2
x

3
x

4
x

5
x

7
x

8
x

9
x

a
x

b
x

c
x

d
x

e
x

f
x

6
0
x

6
1
x

6
2
x

6
3
x

6
4
x

6
6
x

6
7
x

6
8
x

6
9
x

6
a
x

6
b
x

6
c
x

6
d
x

6
e
x

6
f
x

6
5
0
x

6
5
1
x

6
5
2
x

6
5
3
x

6
5
4
x

6
5
5
x

6
5
6
x

6
5
7
x

6
5
8
x

6
5
9
x

6
5
b
x

6
5
c
x

6
5
d
x

6
5
e
x

6
5
f
x

6
5
a
0
x

6
5
a
2
x

6
5
a
3
x

6
5
a
4
x

6
5
a
5
x

6
5
a
6
x

6
5
a
7
x

6
5
a
8
x

6
5
a
9
x

6
5
a
a
x

6
5
a
b
x

6
5
a
c
x

6
5
a
d
x

6
5
a
e
x

6
5
a
f
x

Figure 1: Routing table of a Pastry node with nodeId 65a1x,
b = 4. Digits are in base 16, x represents an arbitrary suffix.

d46a1c

d462ba

d4213f

d13da3

65a1fc

nodeId
key
nodeIdnodeId
keykey

route(m,d46a1c)

0 2 � ��� -1

Figure 2: Routing a message from node 65a1fc with key
d46a1c. The dots depict live nodes in Pastry’s circular names-
pace.

The algorithm guarantees that the message is delivered to
the key’s root unless all l/2 nodes in one half of the leaf set
have failed simultaneously (regardless of the state of routing
tables). Therefore, good fault tolerance requires a leaf set that
is large enough to make the probability of such simultaneous
failures small. For example, a size of 16 to 24 provides good
fault tolerance up to large values of N , which can be further
improved by the leaf set repair mechanism in [16].

2.3 Proximity neighbor selection

The flexibility in the choice of nodeIds to fill routing table
slots can be exploited to implement PNS effectively. Since
any nodeId with the required prefix can be used to fill a slot,
proximity neighbor selection picks the closest node in the un-
derlying network from among those whose nodeIds have the
required prefix. The proximity metric that is typically used in
the definition of closest is round trip delay.

This technique was first proposed in PRR [11]. It is expen-
sive to implement perfect PNS in a large dynamic system but
we describe an heuristic that can achieve similar performance
with low overhead in the next section.

With perfect PNS, the expected distance traveled in the ini-
tial routing hop is small and it tends to increase exponen-

(1) if (k.isBetween(L
−l/2, Ll/2))

(2) // use the leaf set
(3) forward to Li such that |k − Li| is minimal
(4) else
(5) // use the routing table
(6) let r = shl(k, n)

(7) if (Rkr

r exists and is live)
(8) forward to Rkr

r

(9) else
(10) // rare case
(11) forward to t ∈ L ∪ R such that
(12) shl(k, t) ≥ r ∧ |t − k| < |n − k|

Figure 3: Pastry routing procedure, executed when a message
with key k arrives at a node with nodeId n. Ri

r is the entry
in the routing table R at column i and row r. Li is the i-th
closest nodeId in the leaf set L, where a negative/positive index
indicates counterclockwise/clockwise from the local node in
the id space, respectively. L−l/2 and Ll/2 are the nodeIds at
the edges of the local leaf set. kr represents the rth digit in the
key k. shl(k, n) is the length of the prefix shared between k
and n in digits.

tially at each consecutive routing step. This happens because
the density of nodes tends to decrease exponentially with the
length of the prefix match between their nodeId and the desti-
nation key. From this observation, one can derive two impor-
tant properties:
Low delay stretch: The expected distance of the last routing
step tends to dominate the total distance traveled by a message.
As a result, the average total distance traveled by a message
exceeds the distance between source and destination node only
by a small value that is mostly independent of the overlay size.
Local route convergence: The routes of two Pastry messages
sent from nearby nodes with identical keys tend to converge
at a node near the source nodes in the proximity space. This
happens because the messages travel exponentially larger dis-
tances at each consecutive routing hop towards an exponen-
tially shrinking set of nodes. Thus the probability of route
convergence increases in each step even when earlier (shorter)
routing steps moved the messages farther apart. This result
has significance for caching applications layered on Pastry. A
copy of a popular object requested by a node n and cached by
all nodes along the Pastry route is likely to be retrieved from a
nearby node when requested by a node close to n. This prop-
erty is also exploited in Scribe [8] to achieve low link stress in
application level multicast, and to implement nearest-member
anycast [17].

We present an analysis of delay stretch of PNS in Pastry
in the Appendix. This analysis differs from the one in [11]
because it provides a precise estimate instead of asymptotic
bounds and it works for arbitrary topologies that may fail to
satisfy the conditions assumed in [11].

We derive a closed-form expression for the average delay

2

stretch when messages are sent from nodes chosen randomly
with uniform probability from the overlay to keys chosen ran-
domly with uniform probability from the id space. To compute
the average delay stretch, we characterize topologies using the
function D(k) — the average over all nodes p of D(p, k),
which returns the average delay from p to its k closest nodes
in the underlying network.

This analysis is useful to provide an insight into the char-
acteristics of topologies that affect the performance of PNS.
Additionally, we may use approximations of D(k) to predict
performance ahead of deployment.

3 Constrained gossiping

Constrained gossiping (PNS-CG) is a new heuristic that can
approximate proximity neighbor selection with low overhead.
It consists of new node join and overlay maintenance protocols
that reduce the overhead relative to the original Pastry proto-
cols [3] and a new algorithm that uses the routing state already
maintained by Pastry to locate nearby seed nodes for joining.

3.1 Node join

When joining the overlay, a new node x with nodeId X must
contact an existing overlay node a. a then routes a message
using X as the key, and the new node obtains the nth row
of its routing table from the node encountered along the path
from a to X whose nodeId matches X in the first n− 1 digits.
We will argue that x’s resulting routing table is nearly perfect
provided node a is the closest overlay node to x according to
the proximity metric. The closest node can be found using ex-
panding ring IP multicast in some applications or the algorithm
described later.

First, consider the top row of x’s routing table, which is
obtained from node a. Assuming that the triangle inequality
holds in the proximity space, the entries in the top row of a’s
routing table should also be close to x. Next, consider the nth
row of x’s routing table, obtained from the node an encoun-
tered along the path from a to X . By induction, this node is
Pastry’s approximation to the node closest to a that matches
X in the first n− 1 digits. Therefore, if the triangle inequality
holds, the entries in the nth row of an’s routing table should
also be close to x.

It is also important to update other node’s routing tables to
ensure that they remain near perfect after new nodes join the
overlay. Once x has initialized its own routing table, it sends
the nth row of its routing table to each node that appears as an
entry in that row. This serves both to announce its presence
and to gossip information about nodes that joined previously.
Each of the nodes that receives a row then inspects the entries
in the row, performs probes to measure if x or one of the entries
is nearer than the corresponding entry in its own routing table,
and updates its routing table as appropriate.

This procedure provides a very restricted form of gossiping.
It ensures that routing tables remain near perfect because x
and the nodes that appear in row n of x’s routing table form a
group of 2b nearby nodes whose nodeIds match in the first n
digits. These nodes should learn about x’s arrival because x
may displace a more distant node in their routing tables. Con-
versely, a node that is not a member of this group is likely to
be more distant from the members of the group and, therefore,
from x. Thus, x’s arrival is not likely to affect its routing table.

3.2 Node failure

Failed routing table entries are repaired lazily, whenever a
routing table entry is used to route a message. Pastry routes
the message to another node with numerically closer nodeId.
If the downstream node has a routing table entry that matches
the next digit of the message’s key, it automatically informs
the upstream node of that entry.

This procedure also preserves near perfect routing tables.
The downstream node is usually an entry in the same row as
the failed node. If that node supplies a substitute entry for the
failed node, its expected distance from the local node is low
because all three nodes were part of the same group of nearby
nodes with identical nodeId prefix.

If no replacement node is supplied by the downstream node,
a replacement is found by triggering the routing table mainte-
nance task, which is described next.

3.3 Routing table maintenance

We also define a periodic routing table maintenance protocol
that is another form of restricted gossiping designed both to
repair failed entries and to ensure that routing table entries re-
main near perfect to prevent a slow deterioration of the locality
properties over time. Each node runs a periodic routing table
maintenance task (e.g., every 20 minutes). The task performs
the following procedure for each row of the local node’s rout-
ing table. It selects a random entry in the row, and requests
from the associated node a copy of that node’s corresponding
routing table row. Each entry in that row is then compared to
the corresponding entry in the local routing table. If they dif-
fer, the node probes the distance to both entries and installs the
closest entry in its own routing table.

The idea behind this maintenance procedure is to gossip
routing information among groups of nearby nodes with iden-
tical nodeId prefix. If a nearby node with the appropriate prefix
is known to at least one member of the group, the procedure
ensures that the entire group will eventually learn about the
node and will adjust their routing tables accordingly.

3.4 Locating a nearby seed node

Recall that for the node join algorithm to achieve near-perfect
routing tables, the starting node a should be the closest over-

3

(1) discover(seed)
(2) nodes = getLeafSet(seed)
(3) nearNode = pickClosest(nodes)
(4) depth = getMaxRoutingTableLevel(nearNode)
(5) closest = nil
(6) while (closest != nearNode)
(7) closest = nearNode
(8) nodes = getRoutingTable(nearNode,depth)
(9) nearNode = pickClosest(nodes)
(10) if (depth > 0) depth = depth-1
(11) end
(12) return closest

Figure 4: Algorithm to locate closest overlay node. seed is the
overlay node initially known to the joining node.

lay node to the new node x. The original Pastry [3] heuristic
assumed an oracle that returned the closest overlay node to x.
This oracle could be implemented using, for example, the al-
gorithm in [18] but this would require maintaining additional
state.

In Figure 4, we present a new algorithm to find an approxi-
mation to the closest overlay node to x given any seed node in
the overlay. This algorithm is interesting because it does not
require any additional state beyond the routing table and leaf
set that are already maintained by Pastry nodes.

The algorithm exploits the property that location of the
nodes in the seed’s leaf set is uniformly distributed over the
network. Next, having discovered the closest leaf set member,
the routing table distance properties are exploited to move ex-
ponentially closer to the location of the joining node. This is
achieved bottom up by picking the closest node at each level
and getting the next level from it. This performs a constant
number of probes at each level but the probed nodes get expo-
nentially closer at each step. The last phase repeats the process
for the top level until no more progress is made.

To avoid falling into local minima, the process is reseeded
from a new random node until the distance to the closest node
found is below a threshold (currently the average distance be-
tween the nodes contacted and their closest neighbors) or up
to a maximum number of times (currently 5).

Our experimental evaluation shows that this algorithm is ef-
ficient and returns a node whose distance to x is almost as
small as the distance to the closest node.

4 Experimental results

In this section, we present experimental results quantifying the
performance of PNS, PNS-CG, and PNS(K) in Pastry. The
results were obtained using a Pastry implementation running
on top of a network simulator.

4.1 Experimental setup

We used three network topology models. Each topology has a
core set of routers and we ran Pastry on end nodes that were
randomly assigned to routers in the core with uniform prob-
ability. Each end node was directly attached by a LAN link
with a delay of 1ms to its assigned router.
GATech is a transit-stub topology generated with the Georgia
Tech [19] topology generator. This topology has 5050 routers
arranged hierarchically. There are 10 transit domains at the top
level with an average of 5 routers in each. Each transit router
has an average of 10 stub domains attached, with an average
of 10 routers each. We did not assign overlay nodes to transit
routers. The delay between core routers is computed by the
topology generator and routing is performed using the routing
policy weights of the graph generator. As in the real Internet,
the triangle inequality does not hold for a signifcant fraction
of triples of nodes in this topology. Pastry uses the round-trip
delay (RTT) between two nodes as its proximity metric.
Mercator is a topology with 102,639 routers. It was obtained
from real measurements of the Internet using the Mercator sys-
tem [20] and it uses hierarchical routing as in the Internet.
Since the Mercator topology is not annotated with delay infor-
mation, Pastry uses the number of network-level (IP) routing
hops between two nodes as a proxy for delay.
CorpNet is a topology with 298 routers and is generated using
real measurements of the world-wide Microsoft corporate net-
work. The network distance in this topology is the minimum
round-trip delay.

We compared four versions of Pastry: no locality builds
routing tables without taking into account network distance,
PNS uses global knowledge in the simulator to implement per-
fect PNS, PNS-CG uses constrained gossiping to approximate
PNS, and PNS(16) [15] approximates PNS by probing at most
16 random nodes for each routing table slot. The comparison
between the first two provides an upper bound on the benefit
of using PNS. The comparison between the last three evaluates
the extent to which the two heuristics can approximate the per-
formance of PNS and their overhead. We also compare the per-
formance of PNS with predicted, which is the value predicted
by our analysis. There are no failures in our experiments, and
routing table maintenance was disabled. We evaluate routing
table maintenance and failures in [21, 16].

4.2 Delay stretch with varying N

The first experiment routed 200,000 lookup messages from
randomly chosen nodes to randomly chosen keys using the
four different Pastry versions. We ran this experiment in the
three network topologies with b = 4, l = 16, and a varying
number of Pastry nodes.
PNS: Figure 5 compares the delay stretch without locality and
with perfect PNS. It provides an upper bound on the benefit
of PNS in the three topologies. The delay stretch achieved

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10000 20000 30000 40000 50000 60000
#nodes

d
el

ay
 s

tr
et

ch

no locality
predicted
PNS

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10000 20000 30000 40000 50000 60000
#nodes

d
el

ay
 s

tr
et

ch

no locality
predicted
PNS

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10000 20000 30000 40000 50000 60000
#nodes

d
el

ay
 s

tr
et

ch

no locality
predicted
PNS

Figure 5: Delay stretch with b = 4, l = 16, and varying N for GATech, Mercator and CorpNet.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10000 20000 30000 40000 50000 60000
#nodes

#h
o

p
s

no locality
PNS
predicted

Figure 6: Number of Pastry hops with b = 4, l = 16, and
varying N .

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6
hop number

d
el

ay

PNS N=1000
PNS N=60000
no locality

Figure 7: Delay in the i-th hop in a Pastry route in GATech
with b = 4, l = 16, and varying N .

without locality is up to 3 times worse than with the PNS in
Figure 5. Furthermore, the difference grows with the number
of nodes in the overlay. This speaks to the effectiveness of
proximity neighbor selection.

Figures 6 and 7 explain the difference in the delay stretch
achieved with and without proximity-aware routing. Figure 6
shows the number of Pastry routing hops as a function of N .
Figure 7 shows the average delay of the i-th hop in a Pastry
route for regular Pastry with different values of N , and for the
version of Pastry with no locality.

The expected network delay in each hop without proximity-
aware routing is constant and equal to the average delay be-
tween two random nodes in the network. Therefore, the aver-
age delay stretch without proximity-aware routing is equal to
the number of Pastry hops and it grows logarithmically with

N as predicted by the analysis. This can be observed by com-
paring Figures 6 and 5.

The number of hops is virtually identical with and without
proximity-aware routing. Yet, Figure 5 shows that the delay
stretch achieved by PNS is largely independent of the number
of nodes in the overlay. This is because the increase in the
number of hops as N increases is offset by a decrease in the
delay of the first hops along the Pastry route. Figure 7 illus-
trates this effect for N = 1000 and N = 60000. The increased
number of end nodes attached to the core results in additional
nearby nodes to choose from when filling routing table slots at
the top levels of routing tables.

Our analysis predicts the delay stretch quite accurately. The
average prediction error is 1.7% for GATech, 6.4% for Mer-
cator, and 6.5% for CorpNet. The analysis tends to predict
a larger delay stretch than the one measured because of our
assumption that all nodes are equally likely to be used during
routing. Our simulations show that the distribution of the num-
ber of routing table entries pointing to each node is skewed
towards nodes that are central in the network, i.e., nodes that
have a lower average delay to other nodes. This effect is more
significant in Mercator and Corpnet and it results in lower per-
hop delays.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000
#nodes

D
(k

)/
D

(N
)

Mercator
GATech
CorpNet

Figure 8: Average delay to the closest k nodes (D(k)) normal-
ized by D(N) with N = 20000 for all topologies.

The delay stretch achieved by PNS depends on the topology:
it tends to 1.58 in GATech, to 2.09 in Mercator, and to 1.26 in
CorpNet. Recall that the analysis summarizes each topology
using a function D(k) that returns the average delay to the
closest k nodes in the network. Figure 8 plots D(k)/D(N)

5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10000 20000 30000 40000 50000 60000

#nodes

d
el

ay
 s

tr
et

ch PNS(16)
PNS-CG
PNS

0

0.5

1

1.5

2

2.5

3

0 10000 20000 30000 40000 50000 60000
#nodes

d
el

ay
 s

tr
et

ch

PNS(16)
PNS-CG
PNS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10000 20000 30000 40000 50000 60000
#nodes

d
el

ay
 s

tr
et

ch

PNS(16)
PNS-CG
PNS

Figure 9: Delay stretch of heuristics with b = 4, l = 16, and varying N for GATech, Mercator and CorpNet.

for each topology with N = 20000 to provide some intuition
on the difference between the topologies.

The expected delay in the last hop of a Pastry route is equal
to the average delay between two points in the network D(N).
Pastry achieves low delay stretch when the delay in a route is
dominated by the delay of the last hop. This is not the case
in Mercator because D(k) grows very fast reaching 60% of
D(N) for only 5% of the nodes. Therefore, the delay of the
initial hops in Mercator is relatively large when compared with
the delay of the last hop. We believe that this is due to the
use of network hops as a proxy for delay in Mercator. Pastry
achieves much better performance in CorpNet because D(k)
grows slowly. The initial hops in CorpNet account for less
than 30% of the overall route delay.
Heuristics: Figure 9 shows that both heuristics achieve a de-
lay stretch close to PNS. The delay stretch with PNS-CG is at
most 5% worse than with PNS for all topologies and the delay
stretch with PNS(16) varies between 13% worse in CorpNet to
22% worse in GATech. PNS(16) provides lower delay stretch
than PNS-CG for small overlays but its performance degrades
as the overlay size increases. The performance of PNS-CG is
mostly independent of the overlay size. It is interesting to note
that PNS-CG can achieve good performance even though the
triangle inequality does not hold in either GATech or Merca-
tor. In fact, PNS-CG is able to achieve a delay stretch below 1
for 5% of the messages in GATech and 0.3% in Mercator.

4.3 Delay stretch with varying b and l

We also compared the delay stretch with different values of b
and l for N = 20000.
PNS: Figure 10 shows the delay stretch with l = 16 and
varying b for GATech. Decreasing b increases the number of
hops in a Pastry route and consequently increases the delay
stretch. The delay stretch without locality increases by 100%
with b = 1, but it increases only by 20% with PNS. The in-
creased hop count is offset by decreased delay in the first hops
of a Pastry route. The delays decrease because smaller val-
ues of b impose weaker constraints on the nodeIds that can fill
slots at the top levels of routing tables. The analysis is still
quite accurate with an average prediction error of 7%.

0

1

2

3

4

5

6

7

1 2 3 4 5

b
de

la
y

st
re

tc
h

no locality
predicted
PNS

Figure 10: Delay stretch with l = 16, N = 20000, and varying
b for GATech.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 8 16 24 32 40 48 56 64
leaf set size

d
el

ay
 s

tr
et

ch

no locality
predicted
PNS

Figure 11: Delay stretch with b = 4, N = 20000, and varying
l for GATech.

Figure 11 shows delay stretch with b = 4 and varying l
for GATech. Increasing l decreases the number of hops and
the delay stretch. The results show that using a leaf set with
a reasonble size is important not only for fault tolerance but
also to reduce delay. The delay of PNS with l = 2 is 51%
worse than with l = 64. The analysis predicts the delay stretch
with perfect routing tables accurately except for l ≤ 4 (this is
expected as explained in the Appendix).
Heuristics: Figure 12 evaluates the performance of the heuris-
tics with varying b. The performance of both heuristics rela-
tive to PNS degrades in all topologies when b decreases. The
heuristics are unable to offset the increase in hop count as well
as PNS. The number of candidates for routing table slots in-
creases when b decreases but PNS(16) always performs the
same number of probes for each routing table slot. Similarly,

6

the algorithm to locate nearby seed nodes in PNS-CG has a
very small number of samples at each routing table level when
b is small. This results in a significant performance degra-
dation. Additionally, the amount of gossiping in PNS-CG is
proportional to the routing table size, which increases with b.

We also evaluated the performance of the heuristics with
varying l. Our results show that the performance of the two
heuristics relative to PNS is mostly independent of the value
of l across all topologies.

4.4 Local route convergence

The next experiment evaluates the local route convergence
properties of PNS, PNS-CG and PNS(16). The experiment
ran with l = 16, b = 4 and N = 20, 000. Each of the 20,000
nodes sent a message to each of 10 randomly selected desti-
nation keys and we recorded the path from each node to the
root node of each key. We used this information to compute
a convergence metric for all pairs of paths to the same key.
The convergence metric was (cr

cr+s1
c

+ cr

cr+s2
c

)/2, where cr is
the distance (through the overlay) from the node where the two
paths converge to the root node, and s1

c and s2
c are the distances

(through the overlay) from each source node to the node where
the paths converge. This convergence metric captures the aver-
age fraction of the path that was shared between two messages
sent to the same key. When the convergence metric is zero, the
paths converge at the root node.

Figure 13 shows the average convergence metric value ver-
sus the distance between the two source nodes for the three
network topologies. Perfect PNS achieves the best conver-
gence. PNS-CG achieves almost as good convergence as PNS
but has worse performance when the source nodes are very
close in the underlying network. This is due primarily to the
inaccuracy of the algorithm to locate a nearby seed node. The
performance of PNS-CG using an oracle that returns the clos-
est node in the overlay to seed joins is almost identical to per-
fect PNS. As observed in [15], PNS(16) provides poor con-
vergence. It performs worse than PNS and PNS-CG across all
topologies.

4.5 Joining overhead

We also ran experiments to evaluate the overhead of the heuris-
tics when building the overlay. We quantified this overhead by
measuring the average number of distance probes performed
by each node when the overlay grows from empty up to a fi-
nal size N . Each probe corresponds to the communication
required to measure the distance between two nodes and in-
volves at least two messages.

We compare PNS(16) with PNS-CG and with a variant of
PNS-CG that obtains a nearby seed node from an oracle in-
stead of running the algorithm in Section 3.4

The number of distance probes required by PNS(16) is∑128/b−1
i=1 min(1/2ib, 16). With PNS-CG, a node that joins

0

100

200

300

400

500

600

700

0 10000 20000 30000 40000 50000 60000
#nodes

#d
is

ta
n

ce
 p

ro
b

es
 p

er
 n

o
d

e

PNS(16)
PNS-CG
PNS-CG oracle

Figure 14: Number of distance probes per node in GATech
with b = 4, l = 16, and varying N .

the overlay will eventually probe all the nodes in its routing
table and in its leaf set. The routing table size can be ap-
proximated by (2b − 1)log2bN and the number of nodes in
the leaf set is l. Additionally, a joining node sends each row
of its routing table to all the nodes pointed to by the row and
it sends its leaf set to all the nodes in its leaf set. This re-
sults in an additional c1(2

b − 1)2log2bN + c2l
2 probes per

join. The constants c1 and c2 are smaller than one because
the current implementation remembers the distances to nodes
that were probed in the past to avoid probing a node twice.
The constants are difficult to estimate analytically. Putting
these formulas together we can estimate the average num-
ber of distance probes per node for PNS-CG with the oracle
(1+ c1(2

b−1))(2b−1)log2bN +(1+ c2l)l. The algorithm to
locate a nearby seed node requires additional distance probes.
The precise value is hard to estimate but it is O(logn).

The joining protocol requires additional messages that are
not distance probes. There are approximately 2b

−1
2b log2bN

messages to reach the root of the nodeId of the joining node.
This cost is incurred by both PNS-CG and PNS(16). PNS(16)
requires additional messages to locate the nodes to probe for
each slot and PNS-CG requires messages to locate a nearby
seed node and (2b−1)log2bN messages to send the routing ta-
ble rows to nodes in the new routing table of the joining node.
The last set of messages can be piggybacked on the probing of
the same nodes.

Figure 14 shows the number of distance probes per node
in GATech with b = 4, l = 16, and varying N . The over-
heads were similar with other topologies. The overhead of all
heuristics grows logarithmically with N as predicted by our
analysis. The overhead of PNS(16) is initially lower than the
overhead of PNS-CG but it grows faster with the overlay size.
PNS-CG sends 78% less distance probes than PNS(16) when
N = 60, 000 and approximately half the probes are due to
the algorithm to locate a nearby seed node at this point. This
suggests that PNS-CG should attempt to locate a nearby node
using IP multicast in the local network and use the more expen-
sive algorithm only if this fails. The performance of this opti-
mized algorithm should approach the performance of PNS-CG
with oracle in many practical settings.

7

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

b

de
la

y
st

re
tc

h

PNS(16)
PNS-CG
PNS

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5

b

de
la

y
st

re
tc

h

PNS(16)
PNS-CG
PNS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5

b

de
la

y
st

re
tc

h

PNS
PNS-CG
PNS(16)

Figure 12: Delay stretch of heuristics with l = 16, N = 20000, and varying b for GATech, Mercator and CorpNet.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800

Distance between source nodes

C
o

n
ve

rg
en

ce
 m

et
ri

c

PNS

PNS-CG

PNS(16)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40

PNS-CG

PNS(16)

PNS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

Distance between source nodes

C
o

n
ve

rg
en

ce
 m

et
ri

c

PNS

PNS-CG

Figure 13: Convergence metric versus distance between the source nodes with l = 16, N = 20000, and b = 4 for GATech,
Mercator and CorpNet.

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60
leaf set size

#d
is

ta
n

ce
 p

ro
b

es
 p

er
 n

o
d

e

PNS(16)
PNS-CG
PNS-CG oracle

Figure 15: Number of distance probes per node in GATech
with b = 4, N = 20000, and varying l.

We also ran experiments to evaluate the impact of varying
the leaf set size on the overhead. Figure 15 shows the results.
The overhead of PNS(16) is independent of the leaf set size be-
cause PNS(16) never probes the distance to leaf set members.
The overhead of PNS-CG grows with l because leaf set mem-
bers are probed both to locate a nearby seed node and to select
entries to fill the lower layers of routing tables. Many of this
probes are unlikely to generate good candidates and should
be avoided but this is not a problem with the typical leaf set
size between 8 and 16 (which achieves low overhead and can
achieve very good fault tolerance with leaf set repair [16]).

Figure 16 shows the number of distance probes per node
in GATech with l = 16, N = 20000, and varying b. The
overhead increases exponentially with b as predicted by the
analysis. PNS(16) and PNS-CG have similar overhead for
small values of b but the overhead of PNS(16) increases faster

0

100

200

300

400

500

600

700

800

1 2 3 4 5
b

#d
is

ta
n

ce
 p

ro
b

es
 p

er
 n

o
d

e PNS(16)
PNS-CG
PNS-CG oracle

Figure 16: Number of distance probes per node in GATech
with l = 16, N = 20000, and varying b.

with b. Choosing a value of 3 or 4 for b appears to be a good
choice considering the number of routing hops, delay stretch,
and overhead.

5 Conclusion

The paper presented a detailed study of proximity neighbor se-
lection and two heuristic approximations in tree-based struc-
tured p2p overlays. The study was based on simulation re-
sults using three different network topologies, different over-
lay sizes, and different routing parameters. The results show
that PNS provides a significant performance improvement rel-
ative to proximity unaware routing.

We introduced a new heuristic called constrained gossiping
(PNS-CG). The study also compared the overhead of PNS-
CG and PNS(16) [15] and their performance relative to PNS.

8

The results show that PNS-CG achieves performance similar
to PNS with low overhead and that it achieves lower delay
stretch and better route convergence than PNS(16) while in-
curring the same or lower overhead.

References

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A Scalable Content-Addressable Network,”
in Proc. of ACM SIGCOMM, Aug. 2001.

[2] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan, “Chord: A scalable
peer-to-peer lookup service for internet applications,” in
Proceedings of the ACM SIGCOMM ’01 Conference,
San Diego, California, August 2001.

[3] Antony Rowstron and Peter Druschel, “Pastry: Scal-
able, distributed object location and routing for large-
scale peer-to-peer systems,” in Middleware’01, Nov.
2001.

[4] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D.
Joseph, “Tapestry: An infrastructure for fault-resilient
wide-area location and routing,” Tech. Rep. UCB//CSD-
01-1141, U. C. Berkeley, April 2001.

[5] Petar Maymounkov and David Mazières, “Kademlia: A
peer-to-peer information system based on the xor met-
ric,” in IPTPS’02, Boston, MA, Mar. 2002.

[6] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A
scalable and dynamic emulation of the butterfly,” in
PODC’02, Aug. 2002.

[7] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica, “Wide-area cooperative storage
with CFS,” in 18th ACM Symposium on Operating Sys-
tems Principles, Oct. 2001.

[8] Antony Rowstron, Anne-Marie Kermarrec, Miguel Cas-
tro, and Peter Druschel, “Scribe: The design of a large-
scale event notification infrastructure,” in Third Interna-
tional Workshop on Networked Group Communications,
Nov. 2001.

[9] Shelly Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph,
Randy H. Katz, and John Kubiatowicz, “Bayeux: An
Architecture for Scalable and Fault-tolerant Wide-Area
Data Dissemination,” in NOSSDAV 2001, June 2001.

[10] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao,
“Distribted data location in a dynamic network,” in
SPAA’02, Aug. 2002, Winnipeg, Manitoba, Canada.

[11] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Access-
ing nearby copies of replicated objects in a distributed
environment,” in Proc. 9th ACM Symp. on Parallel Algo-
rithms and Architectures, June 1997, pp. 311–320, New-
port, Rhode Island, USA.

[12] Sylvia Ratnasamy, Mark Handley, Richard Karp, and
Scott Shenker, “Topologically-aware overlay construc-
tion and server selection,” in Proc. 21st IEEE INFO-
COM, New York, NY, June 2002.

[13] Miguel Castro, Peter Druschel, Y. Charlie Hu, and
Antony Rowstron, “Exploiting network proximity in dis-
tributed hash tables,” in FuDiCo 2002: International
Workshop on Future Directions in Distributed Comput-
ing, June 2002.

[14] Miguel Castro, Mike Jones, Anne-Marie Kermarrec,
Antony Rowstron, Marvin Theimer, Helen Wang, and
Alec Wolman, “An evaluation of scalable application-
level multicast built using peer-to-peer overlay net-
works,” in Proc. 22nt IEEE INFOCOM, Mar. 2003.

[15] Krishna P. Gummadi, Ramakrishna Gummadi, Steven D.
Gribble, Sylvia Ratnasamy, Scott Shenker, and Ion Sto-
ica, “The impact of dht routing geometry on resilience
and proximity,” in ACM SIGCOMM 2003, 2003.

[16] Ratul Mahajan, Miguel Castro, and Antony Rowstron,
“Controlling the cost of reliability in peer-to-peer over-
lays,” in IPTPS’03, Feb. 2003.

[17] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec,
and Antony Rowstron, “Scalable application-level any-
cast for highly dynamic groups,” in NGC’2003, 2003.

[18] David R. Karger and Matthias Ruhl, “Finding nearest
neighbors in growth-restricted metrics,” in STOC’02,
July 2002.

[19] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to
model an internetwork,” in INFOCOM96, 1996.

[20] H. Tangmunarunkit, R. Govindan, D. Estrin, and
S. Shenker, “The impact of routing policy on internet
paths,” in Proc. 20th IEEE INFOCOM, Alaska, USA,
Apr. 2001.

[21] Miguel Castro, Peter Druschel, Y. Charlie Hu, and
Antony Rowstron, “Exploiting network proximity in
peer-to-peer overlay networks,” Tech. Rep. MSR-TR-
2002-82, Microsoft Research, 2002.

Appendix A

In this appendix, we derive a closed-form expression to com-
pute the average delay stretch when messages are sent from

9

random nodes to random keys. We start by developing a for-
mula for the expected number and type of hops that will be
required to predict delay stretch.

.1 Number of hops

Pastry routes a message towards a destination key by using the
routing table to forward the message to a node that matches
an additional digit of the key’s prefix (line (8) in Figure 3).
This is repeated until the key is between the nodeIds at the
two extremes of the leaf set of the current node (line (3) in
Figure 3). Routing completes in at most one hop after this
happens.

To keep the analysis simple, we neglect the probability of
being unable to forward the message to a node with a longer
prefix match before reaching line (3). This case (line (11) in
Figure 3) is important in the presence of faults and because our
joining algorithm may temporarily leave routing tables incom-
plete. But with a reasonably large leaf set and perfect routing
tables this probability is negligible. Our experimental results
indicate that this case only becomes important for l ≤ 4.

Let Pls(d) be the probability of using the leaf set of the
current node to route given that the current node matches the
first d digits of the key. We define

Prt(d) = Pls(d)

d−1∏
i=0

1 − Pls(i)

Prt(d) is the probability of using only routing table entries to
reach a node that matches the first d digits of the key and then
using this node’s leaf set to reach the key’s root. We also define
Pme(d) to be the probability that this node is the key’s root.

We compute the expected overlap between sets in the
id space to compute an approximate value for Pls(d) and
Pme(d). Let Ime = 2128

N be the expected number of id space
values that are assigned to a node, Ils = l × Ime be the ex-
pected the number of id space values that are between the two
extreme nodeIds in a leaf set, and I(d) = 2128

2bd be the number
of id space values that match d digits of a key. If we approx-
imate the distribution of interval sizes by the expected sizes
defined above, we have:

Pls(d) ≈ Po(Ils, I(d))

Pme(d) ≈ Po(Ime, I(d))

where Po(A, B) is the probability that an interval with width
A covers a point selected with uniform probability from an
interval with width B, when the midpoint of the first interval
is selected independently with uniform probability from the
second. This probability can be approximated by

Po(A, B) ≈
1

B2

∫ B

0

min(x,
A

2
) + min(B − x,

A

2
)dx

The integral is a good approximation because I(d), Ils and
Ime are very large for the values of N and d that we use. We
derived a closed-form expression for this integral.

We can use the above formulas to compute the expected
number of hops, h, in a Pastry route as

h ≈

128/b∑
d=0

Prt(d)[
2b − 1

2b
d +

Pls(d) − Pme(d)

Pls(d)
]

This formula simply multiples the probabilities Prt(d) for all
possible vaues of d by their cost in hops. The cost of reaching
a node that matches the first d digits of the key is smaller than d
because whenever a node matches the first d digits of the key it
will match d+1 with probability 2b

−1
2b . The second component

of the cost accounts for the case where the destination is a
leaf set member and not the current node, thus requiring an
additional final hop.

The expected number of Pastry hops tends to 2b
−1
2b log2bN

when N grows because the effect of the leaf set becomes neg-
ligible. The expected number of nodes that match the first
d digits of a key is N/2bd. This number drops to one when
d = log2bN . The number of hops is smaller than log2bN for
the same reason as before.

.2 Delay stretch

To analyze the delay stretch introduced by Pastry, we need to
predict the expected delay of each Pastry hop. When a mes-
sage is forwarded to a leaf set member of the current node,
the delay is equal to the expected delay in the direct route be-
tween two random nodes in the underlying network. This is
because nodeIds and keys are selected randomly with uniform
probability from the id space and independently from a node’s
network location.

When a message is forwarded to a node in the routing ta-
ble of the current node, the delay depends on the level of the
routing table. We can predict the expected delay to nodes at
each level of the routing table of a node p using the function
D(p, k), which returns the average delay from p to its k closest
nodes in the underlying network, for k ≤ N (with ties broken
arbitrarily). If k > N then D(p, k) = D(p, N). Additionally,
let D(p, k1 : k2) = k2D(p,k2)−k1D(p,k1)

k2−k1

denote the average
distance from p to the set of nodes above the k1-th closest up
to the k2-th closest for k2 > k1.

There is always one slot at each level d (d ≥ 1) of p’s
routing table that points to p. With perfect routing tables, the
nodes in the other slots are selected by traversing the list of
all nodes in order of increasing distance until nodes with the
desired nodeId prefix are found. We expect to find a node that
can fill another slot at level d after inspecting the first N1 =
2bd

2b−1
nodes in the list. So the expected delay to this node is

D(p, 1 : N1). Similarly, we expect to find a node to fill the

next slot after inspecting an additional 2bd

2b−2 nodes in the list.

10

The expected delay to this node is D(p, N1 : N2) where N2 =

N1 + 2bd

2b−2
. Therefore, the expected delay to the i-th filled slot

(0 < i < 2b) at level d of p’s routing table is approximately
equal to

D(p, Ni−1 : Ni)

with Ni = Ni−1 + 2bd

2b−i
for i > 1 and N0 = 1. This is an

approximation because we are approximating the distribution
of the number of nodes required to fill a slot by its expected
value.

The expected delay to the slots at level d of the routing ta-
ble of node p, Drt(p, d), can be computed by averaging the
expected distance to each slot given by the above formula:

Drt(p, d) ≈
1

2b − 1

2b
−1∑

i=1

D(p, Ni−1 : Ni)

The average of this function over all nodes in the overlay,
Drt(d), can be used to compute the average delay in Pastry
routes assuming that all nodes are equally likely to be used in
routing. This average can be computed using a more compact
characterization of the underlying network topology, which
averages the function D(p, k) over all overlay nodes

D(k) =
1

N

∑
p∈N

D(p, k)

Given this compact description of the topology we can com-
pute Drt(d) for all desired values of b:

Drt(d) ≈
1

2b − 1

2b
−1∑

i=1

D(Ni−1 : Ni)

This function can be used to compute the expected delay
stretch, S, by replacing the unit cost for each hop by the ex-
pected delay of each hop in the equation to compute the ex-
pected numbed of hops h.

S ≈
1

D(N)

128/b∑
d=0

Prt(d)[δ(d) +
Pls(d) − Pme(d)

Pls(d)
D(N)]

where δ(d) =
∑d

i=0
2b

−1
2b Drt(i), Drt(0) = 0, and D(N)

is the average delay in the direct route between two random
nodes in the underlying network. This analysis can be applied
to arbitrary network topologies by providing a function D(k)
that characterizes the network.

11

