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Abstract
Cloud providers and companies running large-scale data
centers offer near-line, cold, and archival data storage,
which trade access latency and throughput performance
for cost. These often require physical rack-scale storage
designs, e.g. Facebook/Open Compute Project (OCP)
Cold Storage or Pelican, which co-design the hardware,
mechanics, power, cooling and software to minimize
costs to support the desired workload. A consequence is
that the rack resources are restricted, requiring a software
stack that can operate within the provided resources. The
co-design makes it hard to understand the end-to-end
performance impact of relatively small physical design
changes and, worse, the software stacks are brittle to
these changes.

Flamingo supports the design of near-line HDD-based
storage racks for cloud services. It requires a physical
rack design, a set of resource constraints, and some tar-
get performance characteristics. Using these Flamingo
is able to automatically parameterize a generic storage
stack to allow it to operate on the physical rack. It is
also able to efficiently explore the performance impact of
varying the rack resources. It incorporates key principles
learned from the design and deployment of cold storage
systems. We demonstrate that Flamingo can rapidly re-
duce the time taken to design custom racks to support
near-line storage.

1 Introduction

Storage tiering has been used to minimize storage costs.
The cloud is no exception, and cloud providers are cre-
ating near-line cloud storage services optimized to sup-
port cold or archival data, for example Amazon’s Glacier
Service [2], Facebook’s Cold Data Storage [17], Google
near-line storage [19] and Microsoft’s Pelican [8]. In
contrast to online storage [16], near-line storage trades
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data access latency and throughput for lower cost; access
latencies of multiple seconds to minutes are normal and
throughput is often lower or restricted.

To achieve the cost savings many of these near-line
storage services use custom rack-scale storage designs,
with resources such as power, cooling, network band-
width, CPU, memory and disks provisioned appropri-
ately for the expected workload. This is achieved through
co-designing the rack hardware and software together,
and systems like Pelican [8] and OCP Cold Storage [20]
have publicly demonstrated that designing custom racks
for near-line storage can result in significant cost savings.
For example, in both of these designs there is insufficient
rack-level power provisioned to allow all the hard disk
drives (HDDs) to be concurrently spinning. By implica-
tion, the rack cooling is then only provisioned to handle
the heat generated from a subset of the HDDs spinning.
The goal of the rack’s storage stack is to achieve the best
possible performance without exceeding the physical re-
source provisioning in the rack.

The most common way of managing these constrained
resources is by controlling how data is striped across
HDDs, and by ensuring the individual IO requests are
scheduled taking into account resource provisioning. In
particular, the data layout defines the set of disks for a
single IO that need to be read from or written to, and
the IO scheduler defines the set of disks that need to be
accessed for multiple IOs being concurrently performed.
Our experience building near-line storage is that, given
a well-designed storage stack, it is feasible to only re-
design the data layout and IO scheduler in the stack to
handle different rack designs and/or performance goals.
Unfortunately, it is also the case that even simple and
seemingly small design changes require a redesign of the
data layout and IO scheduler. Designing the data lay-
out and IO scheduler is challenging and time consuming
even for experts, and it is hard to know if they are achiev-
ing the best possible performance from the rack.

Flamingo is a system that we use to help automate and



reduce the complexity of designing near-line storage. It
incorporates the many lessons learned during the design
and deployment of Pelican. Flamingo uses a generalized
storage stack that is derived from the one used in Pelican
and described in [8], and a tool chain to automatically
synthesize the configuration parameters for the storage
stack. Flamingo requires a physical rack description, a
set of resource descriptions in the form of resource con-
straints, and expected performance characteristics. Un-
der typical operation the tool chain takes a few hours
to produce the configuration parameters. Flamingo has
been used to determine the impact of and to drive design
and component changes to Pelican.

Flamingo is also able to help designers explore the
physical rack design space by automatically quantify-
ing the impact of varying the physical resource provi-
sioning in the rack. It is able to determine the minimum
increase in a resource, such as power, that would yield
a change in performance. It is also able to determine
the impact of using components with different proper-
ties, such as a new HDD with a different power profile.
In such cases, it can also evaluate how much extra perfor-
mance could be gained by reconfiguring the storage stack
to exploit that component. Flamingo can handle signif-
icantly more complexity than a human and it is able to
generate configurations and determine the likely perfor-
mance of a physical design before it is even built.

This paper is organized as follows: Section 2 intro-
duces near-line storage, Pelican and motivates the prob-
lems solved by Flamingo. Section 3 and 4 describe
Flamingo, and the core algorithms used. Section 5 shows
results, Section 6 describes related work and Section 7
concludes.

2 Background: Near-line storage

A cloud-scale storage service will consist of thousands
of storage racks. A deployed rack will be used for many
years, and then retired. Rack designs will be revised as
price points for components change or newer versions
are released. Hence, at any point in time, a small num-
ber of different storage rack designs will be deployed in
a single cloud-scale storage service. A near-line stor-
age rack will usually consist of servers and HDDs, and
each server will run an instance of a storage stack. In
online storage it is common to have 30-60 HDDs per
server, while in near-line it can be 500+ HDDs per server.
We provide a brief overview of Pelican as Flamingo uses
many of its key principles, but for the full details see [8].

Pelican A Pelican rack has 1,152 HDDs and two
servers. Each HDD is connected to a SATA 4-port mul-
tiplier, which is connected to a 4-port SATA HBA. Pel-
ican uses PCIe to connect the 72 HBAs to the server,
such that each HBA can be attached to either one of the

servers. Power and cooling are provisioned to allow only
a small fraction of the HDDs to concurrently be spinning
and ready to perform IO (active) while the other HDD
platters are spun down (standby).

HDDs are physically located in multiple physical re-
source domains: power, cooling, vibration and band-
width. A Pelican power domain contains 16 HDDs and
has sufficient power to support two HDDs transition-
ing from standby to active, with the 14 other HDDs
in standby. A Pelican cooling domain has 12 HDDs
and can provide sufficient heat dissipation to support
one HDD transitioning from standby to active and 11
in standby. These domains represent constraints im-
posed by the physical rack, and combining these two
constraints means that at most 96 HDDs can be concur-
rently active in a Pelican.

Violating physical resource constraints leads to tran-
sient failures, can increase hardware failure rates or sim-
ply decrease performance. Hence, the storage stack
needs to ensure that the operating state of the rack re-
mains within provisioned resources. Pelican handles
these constraints by first carefully managing data lay-
out. Each HDD is assigned to a group that contains 24
HDDs. The assignment is done to ensure all HDDs in a
group can be concurrently transitioned from standby to
active. Hence, at most 2 HDDs per group can be in the
same power domain. Pelican stripes a stored file across
multiple HDDs in the same group and, if required, era-
sure coding can be used. The Pelican prototype striped
a file across eighteen HDDs with fifteen data fragments
and three redundancy fragments. The mapping of HDDs
to groups, the group and stripe size and erasure coding
parameters are the data layout configuration. They are
a function of number of HDDs in the rack, the physi-
cal resource constraints, required data durability, target
throughput, and the capacity overhead. They are unique
to a particular hardware design and set of resource con-
straints. To determine them is complex and during the
original Pelican design it took many months to determine
the correct parameters.

Within the Pelican software stack the other part which
interacts closely with the physical rack and resource con-
straints is the IO scheduler. The IO scheduler determines
the order in which IO requests are serviced, and it at-
tempts to balance performance with fairness. Flamingo
uses a new IO scheduler that is configurable and we dis-
cuss this in detail in Section 3.2.

Real-world lessons Pelican makes a number of sim-
plifying assumptions. Notably, it assumes that an ac-
tive HDD uses the same resources as a HDD transition-
ing from standby to active. This makes the problem
more tractable, but can lead to resource underutilization
that results in lower performance than theoretically sup-
ported. Some elements of the Pelican software stack
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Figure 1: Flamingo overview.

proved to be very brittle to design changes. Subtle and
often seemingly innocuous changes to the physical rack
or components require significant redesign of the data
layout and IO scheduler. For example, during the de-
sign of Pelican changing HDDs introduced new vibra-
tion issues, and also changed the power and cooling pro-
files. These changes provided the potential to have more
HDDs to be concurrently active. However, without re-
designing the data layout and IO scheduling in Pelican
we were unable to unlock the better performance these
HDDs could offer. This also requires using HDDs that
offer similar or better properties compared to the HDDs
we designed for originally. Subtle changes can result in
resources being violated, which is often hard to detect
when they do not lead to immediate failure. Finally, the
cooling properties of a rack are a function of the ambient
temperature in the data center in which it operates. This
varies across data center designs and data center cool-
ing technologies. This means that to maximize resource
usage given a set of physical resources then a per data
center data layout and IO scheduler is required.

When building complex near-line storage systems it
is hard to accurately estimate the performance impact of
small design changes. Simplistically, adding a few ex-
tra fans will increase the fraction of HDDs that can be
concurrently active in a cooling domain, but it is hard
to understand the impact this will have on higher-level
performance metrics.

Finally, we also believe that, based on our experi-
ences with Pelican for near-line storage, the underly-
ing principle in Pelican of organizing the HDDs into
groups that can be migrated between states concurrently
is good. This allows resource conflicts to then be handled
at the group level rather than the HDD level which low-
ers complexity and increases performance. The design
of Flamingo therefore embodies this concept.

3 Flamingo

Flamingo leverages the fact that most of the Pelican stor-
age stack is generic and independent of the hardware
constraints; it uses the Pelican stack with a new config-
urable IO scheduler, and then uses offline tools to synthe-

size the data layout and IO scheduler parameterization
for a given rack design.

Flamingo also supports the co-design of the rack hard-
ware and software. Using a rack-scale event-based simu-
lator it allows potential hardware resource configurations
to be instantiated with a storage stack and then specific
workloads replayed against them to understand higher-
level performance. It also automatically explores the
design space for resource provisioning to determine the
performance impact of increasing the resources in a rack.
This information can be used to both change the physical
rack design, but also to help component manufacturers
optimize their components to yield better performance.

Figure 1 shows the two main Flamingo components:
an offline tool and a configurable storage stack. The of-
fline tool has three phases. The first takes a physical rack
description and a set of resource constraints, and itera-
tively generates new sets of resource constraints that ef-
fectively provide the potential for higher performance.
The physical rack description and a single set of resource
constraints represents a potential configuration, and re-
quires a parameterized storage stack. The second phase
then concurrently synthesizes for each unique configura-
tion the parameters required for the data layout and the
online IO scheduler. Target performance characteristics
are provided, and the goal is to synthesize the configu-
ration for the storage stack that meets or exceeds these
performance characteristics. If it can be determined in
this phase that a particular performance target cannot be
met, then a policy can be specified to either relax the per-
formance target or simply reject the configuration.

Unfortunately, not all performance targets can be ver-
ified as being met or exceeded during the second phase,
and the final phase uses an accurate rack-scale discrete
event simulator to empirically determine the expected
performance. This does a parameter sweep using syn-
thetic and real workloads evaluating micro- and macro-
level performance for each configuration point. At the
end of this offline process Flamingo has generated the
storage stack parameters for each configuration, and the
relative performance of each configuration. If the explo-
ration of multiple configurations is not required, then the
first stage can be skipped.
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Failure Domains
f ailurerate : [compname ,AFR]
f ailuredomain : [domname ,compname ,{HDDid1 ,HDDid2 , ...,HDDidN }]

Resource Domains
HDDcost : [resname , [coststandby ,costspinningup ,costspinning ]]

resourcedomain : [domname ,resname ,{HDDid1 ,HDDid2 , ...,HDDidN },dombudget ,hard|so f t]

Figure 2: The rack description and resource constraints.

Flamingo is able to perform this in less than 24 hours
for all rack configurations that we have tried. We now
describe in detail how Flamingo works, starting with the
information Flamingo requires.

3.1 Flamingo requirements

Flamingo requires a rack description that captures the
different resources and their domains, a set of resource
constraints expressed over these domains, the target per-
formance characteristics and a state machine that cap-
tures the HDD operating states and resource usage. The
rack description captures the physical properties of the
rack and the physical relationship between HDDs and re-
source domains. The set of resource constraints capture
the resource provisioning per resource domain. Given
the tight relationship between the rack description and
the resource constraints we use a single input file to cap-
ture them both, and its syntax is shown in Figure 2.

Each HDD is assigned a unique HDDid . Flamingo al-
lows an arbitrary number of HDD operating states. For
simplicity here, we use only three states: standby, spin-
ning up and active. In reality, there are several other
potential states, including multiple lower power states,
some of which keeps the platter spinning at a low RPM.
Flamingo requires a state machine showing the possible
HDD operating states and transitions between them. Op-
erating states where IO requests can be serviced need to
be explicitly identified, e.g. when the HDD is not spin-
ning, or is spinning up, the HDD is unable to service IO
requests. Operating states that can service IO requests
are referred to as active. Given the current design of
HDDs the tool supports only a single active state cur-
rently. Flamingo also needs to know which operating
states are transient, e.g. spinning up.

The rack description and the resource constraints are
expressed in terms of sets of HDDs. The rack descrip-
tion includes information about all (component) failure
domains with their associated Annualized Failure Rates
(AFR). If the AFR varies over time, then the worst case
AFR is specified. Each failure domain is expressed in
terms of the set of HDDs that would become inaccessi-
ble if the component fails. For example, if there is a tray
that connects 16 HDDs together, a tray failure will lead
to all 16 HDDs failing. So, if there are b trays then there
will be b sets each containing 16 HDDs and an AFR will

be associated with the tray.
The resource constraints are captured as resource do-

mains which are expressed as a set of HDDs and an as-
sociated resource budget. Examples of resource domains
may be power, cooling, bandwidth, and vibration. Indi-
vidual HDDs will appear in multiple resource domains.
Flamingo uses no explicit knowledge of any resource
types, it treats all resources as simply names with associ-
ated constraints. This allows new resources to be easily
incorporated within a design or arbitrarily changed. For
example, half way through the design of Pelican we real-
ized that the layout needed to handle vibration. Because
Flamingo has no knowledge of resource types, a budget
is associated with each resource domain set, and is sim-
ply a floating point number, and the unit is arbitrary. For
example, for a power resource domain the unit could be
Watts, and the original budget could be 50W. For each
resource, Flamingo also needs the resource cost for oper-
ating in each state (HDDcost ), in the case of power these
can be taken from the data sheet, e.g. spinning up may be
20W, active may be 10W and standby may be 1W. The
current cost is the sum for all HDDs for them to operate
in their current operating state. If a resource domain is
hard then the current cost must not be higher than the
budget, as this can cause long or short term failure. A
so f t resource domain can be violated, but this will im-
pact performance rather than failure rates. For each re-
source domain it is possible to set an upper bound that is
used to control the search space when exploring chang-
ing the resource provisioning. By default, when explor-
ing the design space Flamingo will look to increase a re-
source by the minimum that will allow at least one drive
to transition to a different operating state. The minimum
increase can also be specified. For example, a power do-
main may have an upper bound of 500W and a minimum
increase of 25W.

Hierarchical resource domains can easily be ex-
pressed. For example, there could be a backplane that
has 10 trays with 16 HDDs attached to it. A power do-
main can be created containing all 160 HDDs with a
power budget. Then a power domain can also be created
for each of the 10 trays. The sum of the tray budgets can
exceed the budget for the backplane, but the backplane
budget will never be exceeded.

Some resources are not necessarily additive, for ex-
ample vibration. Using resource domains and budgets
we have been able to handle these by emulating counting
semaphores. The budget is used to capture the number of
HDDs that are allowed in a particular state, and the HDD
costs are set to zero or one. Using overlapping resource
domains then also allows us to specify complex relation-
ships. One set of resource constraints could be used to
enforce that no neighboring HDDs can spin up concur-
rently, while a second one says that in a single tray only
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4 can spin up concurrently. Flamingo will enforce both
in its designs.

Finally, Flamingo also requires target performance
characteristics; in particular data durability, physical ser-
vicing window, rack deployment lifetime, lower bound
on bandwidth for file transfer, level of IO concurrency,
capacity overhead for failure resilience and a fairness
goal expressed as the trade-off in access latency versus
throughout.

Simplifying assumptions The rack description al-
lows arbitrary racks to be described. However, Flamingo
makes two assumptions about the resource domains.
First, for each resource defined every HDD in the rack
must be specified in a resourcedomain description for that
resource. For example, if power is a resource then each
HDD must appear in at least one resourcepower defini-
tion. Second, each resource domain definition for a re-
source must include the same number of HDDs and be
provisioned with the same budget. In the previous ex-
ample of a tray and backplane power domain with dif-
ferent number of HDDs, this can be simply encoded by
naming the resource domains differently, e.g. powertray
and powerbackplane. Finally, we assume that there is only
one class of storage device specified. Flamingo can sup-
port other classes of storage device beyond HDD, pro-
vided they can be expressed as having multiple operat-
ing states over different resources. Flamingo could be
extended to handle different storage device classes in the
same rack, but this would increase the state space that
Flamingo needs to handle. We believe these assumptions
are reasonable and hold for all cold storage hardware that
we are aware of, including Pelican and OCP Cold Stor-
age. They simplify the data layout and in many cases
reduce the number of inter-group constraints, improving
concurrency and reducing overhead for the IO scheduler.

3.2 Flamingo Design

We now describe three important aspects of the core
Flamingo design: the exploration of rack configurations,
the data layout and the IO scheduler configuration.

3.2.1 Exploring rack configurations

The offline tool has three phases, the first explores the de-
sign space for resource provisioning in the rack. This is
achieved by taking a configuration consisting of the rack
description and a set of resource constraints and slowly
relaxing the resource constraints. Each time a resource
constraint is relaxed a new configuration is created which
consist of the original rack description with the new set
of resource constraints.

The intuition is that, if there are q resources, then there
is a large q-dimensional space representing the set of all

configurations. However, many of these configurations
will vary resources that are not impacting the perfor-
mance and can therefore be ignored. Hence, there is a
surface being defined in the q-dimensional space of inter-
esting configurations that can impact performance, and
Flamingo is determining the configurations that lie on
that surface. This can be a large space, for example a
simple Pelican has q = 4 and, given multiple operating
states for the HDDs, the total number of potential con-
figurations is in the millions. However, the number of
useful configurations will be considerably smaller.

Flamingo achieves this by determining the bottleneck
resource for a given configuration. To calculate the
bottleneck resource Flamingo calculates the number of
HDDs in the rack (N) and, for each hard resource r,
Flamingo determines the number of HDDs in each re-
source domain set for r, (Nr), and the per-resource do-
main budget (rbudget ). Both Nr and rbudget will be the
same for all resource domain sets for r. We define
costhighest as the highest cost HDD operating state and
the lowest as costlowest . The number of HDDs, (mr), that
can be in the highest operating state in each single re-
source domain is:

mr =
⌊ rbudget − costlowestNr

costhighest − costlowest

⌋
(1)

Across the entire rack the number of HDDs, (Mr), that
can be operating in their highest cost operating state for
the resource is:

Mr = (N/Nr)×mr (2)

Flamingo generates for each resource r the value Mr.
Given two resources, say r = power and r = cooling,
then power is more restrictive than cooling if Mpower <
Mcooling. To determine the bottleneck resource, the re-
sources are ordered from most to least restrictive using
their Mr values. The most restrictive resource is the
bottleneck resource. The maximum number of HDDs
that can be concurrently in their highest cost operating
state M is then simply M = Mbottleneckresource. If there are
two or more resources with equal Mr values then it is
recorded that there are multiple bottleneck resources.

Once a bottleneck resource has been identified, the
budget associated with the bottleneck resource is in-
creased by δ . δ is the maximum of the smallest addi-
tional cost that will allow a single HDD in the bottleneck
resource domain to transition to the next highest cost op-
erating state and the specified minimum increase for the
resource domain. The budget is then increased on the
bottleneck domain by δ to create a new configuration.

If there is more than one bottleneck resource, then
a new configuration is created where exactly one re-
source is selected to be relaxed. These configurations
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are then all used independently to recursively generate
more configurations. The configuration exploration ter-
minates when M = N, in other words, represents a fully
provisioned rack or the bottleneck resource has reached
the upper bound specified for it and cannot be increased.
If the bottleneck resource cannot be increased it does not
matter if other resources could be increased, they cannot
yield better performance.

The number of configurations considered is dependent
on the number of resources and the range over which
the resources operate. Generating the configurations is
fast, taking on the order of seconds on a high end CPU.
Once all the configurations have been generated the stor-
age stack parameters need to be calculated, which can
happen in parallel for each configuration.

3.2.2 Data Layout

For each configuration Flamingo next needs to synthe-
size the data layout, and this involves two stages:

Groups and erasure coding Flamingo computes
groups of HDDs such that each HDD belongs to a sin-
gle group and there are sufficient resources across all re-
source domains to allow all the HDDs in the group to
concurrently transition to their active state. We make a
simplifying assumption that all groups are the same size,
n. A file is stored on a subset of the HDDs in a single
group, with k data and r redundant fragments generated
for each file using erasure coding [28, 12].

The first stage is to calculate the group size. Flamingo
does this by initially generating a set of candidate group
sizes. Files are stored in a single group, therefore n
should be large enough to store all fragments of a file
even in presence of HDD failures, but small enough to
maximize the number of groups that can be concurrently
spun up. Because all HDDs in a group need to be able
to spin up concurrently, bM/nc groups can be simulta-
neously activated. To maximize resource utilization, we
first enforce that M mod n = 0. For example, if M = 96
then both n = 21 and n = 24 allow the same number of
concurrently active groups: 4, but only n = 24 fulfills
96 mod n = 0. For M = 96, this restricts the possible
group sizes to n = {1, 2, 3, 4, 8, 12, 16, 24, 32, 48,
96}. We refer to this as the candidate set. If the set is
empty, then Flamingo stops processing the configuration
and generates an error.

Flamingo then determines a set of values for erasure
coding parameters k and r. The choice of values are a
function of (i) the required data durability, (ii) the com-
ponent failure rates, (iii) the storage capacity redundancy
overhead i.e., r

k+r , (iv) the interval between physically
servicing a rack, and (v) the lower bound on per-file
read or write throughput. The first four parameters are
used in a simple failure model to generate a set of pos-

sible k + r values. The fifth parameter is then used as
a threshold for values of k + r, removing combinations
that would yield too low throughput, so we look for
k×HDDbandwidth ≥ target. The result is an ordered list
consisting of k+ r pairs that provide the specified dura-
bility ranked by the storage capacity overhead ( r

k+r ). If
the set is empty, then an error is raised and Flamingo
stops processing this configuration. The same model is
also used to calculate f , an estimate of the maximum
number of HDDs expected to fail during a rack service
interval. This is calculated assuming that failure recov-
ery is performed at the rack level which can be done by
the Flamingo storage stack. However, if failure recovery
is handled at a higher level across storage racks, then f
can be configured to always be zero.

Given the candidate set of possible group sizes, the
ranked (k + r) list and f , Flamingo needs to select the
lowest value for n from the candidate set, such that k+
r + f ≤ n. This maximizes the number of concurrently
active groups and therefore the number of concurrent IO
requests that can be serviced in parallel. So, given the
previous candidate groups sizes, if the smallest value of
(k,r) = (15,3) and f = 2 then n = 24 will be selected.
If M/n is less than the specified concurrent IO request
target, Flamingo stops processing the configuration.

The Flamingo storage stack attempts to distribute the
stored data in a group uniformly across all the HDDs in
a group. When a group is accessed all n HDDs are con-
currently migrated to the new state, rather than k. The
reason to spin up k+r is to allow us to read the data when
the first k HDDs are ready to be accessed. The Flamingo
runtime spins up the entire n (e.g. k+ r+ f ) HDDs op-
portunistically, because if another request arrives for the
group we are able to service it without waiting for poten-
tially another drive to spin up.

Mapping HDDs to groups Once n has been deter-
mined, Flamingo next needs to form l, where l = N/n,
groups and assign each HDD to exactly one group. The
assignment is static, and transitioning any HDD in a
group to a new state that would violate any hard resource
constraint means the entire group cannot transition.

The assignment must also try to maximize IO request
concurrency, which means maximizing the number of
groups that can concurrently transition into active, where
the upper bound is M/n. However, ensuring a mapping
that achieves this is non-trivial because each HDD as-
signed to a group potentially conflicts with other groups
in all its domains. This will lead to inefficient data lay-
outs, in which every group conflicts with l− 1 groups,
achieving very low IO request concurrency e.g. one.

The number of possible assignments grows exponen-
tially with the number of HDDs. To make this tractable,
we use a custom designed solver that restricts the search
space and selects the best group assignment according to
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a set of performance-related characteristics and heuris-
tics. The solver exploits the observation that many re-
source domains are not composed of arbitrary HDDs but
are rather defined by their physical location in the rack.
For instance, the power domain would correspond to a
backplane. The solver derives a coordinate system that
captures this physical layout from the rack description
and assigns a d-dimensional coordinate to each HDD,
where d is the number of resource domain types.

The solver tries to form groups of HDDs that are close
to each other in the coordinate space and do not conflict
in any resource domain. It does this by initially gen-
erating different ordered vectors of the HDDs. This is
achieved by changing the starting coordinate and rank-
ing the coordinates on different dimensions. Hence, if
each HDD has an (x,y) coordinate, one ranking would be
generated by ordering on x then y and another one would
be generated ranking y then x. The ordering function is
dimension specific, so it can generate smallest to largest
on x, but for coordinates where x is equal, rank largest to
smallest on y. This generates multiple orderings of the
HDDs. For each ordered vector created Flamingo greed-
ily attempts to assign HDDs to groups, using a number of
different heuristics to control into which group the next
HDD is mapped. This is deterministic, no randomiza-
tion is used. Intuitively, this finds good assignments be-
cause the group structure exploits the physical symmetry
of the rack topology, forming sets of groups that conflict
in all domains and are independent from the rest of the
rack.

For each iteration, if the solver finds a solution where
all HDDs are successfully assigned to groups such that
all the HDDs in each group can concurrently transi-
tion operating states, then Flamingo needs to measure the
quality of each solution. The metric of importance is the
level of IO request concurrency that can be achieved by
the data layout. An efficient solution will always allow
any arbitrary selected M/n groups to be concurrently in
their highest operating state.

Even with the custom solver this metric will need to be
calculated potentially thousands of times per configura-
tion. Hence, Flamingo uses a number of fast-to-compute
heuristics. First, Flamingo determines if the groups are
symmetric. We take each resource constraint and replace
the HDD identifier in the definitions with the group iden-
tifier. For each group we then look at each resource do-
main in which it is present, and count the number of
other unique groups that are present in each. We re-
fer to these groups as conflicting groups. If, across all
groups, the cardinality of the conflicting groups is the
same, then the groups are symmetric. Each group im-
pacts the same number of other groups. Further, the ex-
pected upper bound on the number of groups that should
conflict with each group can be calculated.

Flamingo then uses a sub-sampling of the space to
check configurations, and in particular explores sam-
ple sets consisting of less than or equal to M/l groups,
checking if they can be successfully concurrently transi-
tioned. The sub-sampling also estimates a lower bound
on the number of groups that can be active (e.g. spinning)
and another group transitioned into an active state. The
expected number is determined as a function of M and
again sub-sampling is used to estimate the lower bound.
The number of samples can be varied per configuration.

If the ranking is shown to have no examples that vio-
late the expected performance for these heuristics, then
it is marked efficient and the solver stops. Otherwise,
the solver records the quality of the metrics and contin-
ues to iterate through rankings. If all rankings have been
checked and no efficient solutions found, then the solver
selects the best solution found but marks the result inef-
ficient. The output of the solver is a set of HDD to group
mappings which define the data layout.

3.2.3 IO scheduler

Once data layout is complete the IO scheduler configu-
ration needs generating. The IO scheduler in the storage
stack receives IO requests and controls the order in which
they are executed. It also controls when groups transition
states. If it has a request for a group that is currently not
active, it will ensure that the group becomes active and
then issues the request to be serviced. It has to ensure
that during operation the order in which groups transition
between states does not violate the resource constraints.
In order to do this, the IO scheduler needs to understand
the relationship between groups, and we achieve this us-
ing a set of constraints between groups. The inter-group
constraints capture the resource sharing relationships be-
tween groups, and allow the IO scheduler to determine
which groups can concurrently be spinning.

To generate these IO scheduler group constraints
Flamingo translates the resource constraints from being
HDD based to group based. Each HDD identifier in each
resource constraint is replaced with the HDD’s group
identifier and a weight, wid initially set to one. For each
resource constraint, all references to same group iden-
tifier are combined into a single entry with wid being
set to the number of references. The budget and asso-
ciated per state costs for the original resource constraints
are kept. If there are multiple group constraints which
have exactly the same groups represented, the one with
the most restrictive budget is kept. Flamingo outputs the
set of group constraints.

The online IO scheduler in the storage stack uses the
group constraints to control which groups can be spun
up. It maintains a per-group queue for IO requests that
are yet to be issued and an operating state for each group,
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Rack #HDDs #HDDs/server #domains avg. HDDs/domain
OCP 240 240 73 15
Pelican 1152 576 1111 10
Rack A 1152 576 1039 22
Rack B 1152 576 1087 11
Rack C 1152 576 1063 14
Rack D 960 480 942 9
Rack E 1920 960 1883 9

Table 1: Core properties of the seed racks.

which maps onto the HDD states, e.g. standby, spin-
ning up, and spinning. The IO scheduler also maintains
for each group constraint a balance, equal to the sum of
coststate×wid for each group. In general, a group can
transition to a new state if, for all group constraints, the
change in balance is within the group constraint budget.

The IO scheduler is invoked each time a IO request is
received, or an IO or group state transition completes. It
needs to determine if there is a request that can be now
serviced or if a group transition needs to occur to service
queued requests.

The choice of which group or groups to transition is
a function of the per group queue depth and the current
queuing delay for the head request. There is a trade-off
between latency and throughput, there is a throughput
penalty for changing group state, but there is a latency
penalty of making requests queue for longer. The perfor-
mance characteristics specified control this trade-off. If
the IO scheduler decides that a group g needs to transi-
tion state, the IO scheduler iterates over the groups and,
using the group constraints, greedily identifies sets of
groups that could be transitioned to free the resources
to allow g to transition. If none or insufficient resources
are found, then the scheduler waits for in-flight requests
or group transitions to complete. If there are a number
of sets of groups, then the scheduler selects the groups to
transition based on their queue depth and head request
delay. When it has selected a group or groups to transi-
tion, if there are spare resources in any group constraints,
the IO scheduler is invoked again to allow further groups
to transition state.

4 Evaluation

We now evaluate the performance of Flamingo using
seven seed rack configurations, including Pelican and
the Facebook/OCP Cold Storage Design [20]. The OCP
Cold Storage Rack contains two independent servers and
16 Open Vault chassis, each filled with two trays of 15
HDDs with sufficient power and cooling to support one
active drive and 14 in standby. The tray is a vibration
domain, and each server is connected to 8 chassis using
SAS containing a combined 240 HDDs and independent

of the other server in the rack. Hence, this rack con-
figuration is a half rack consisting of a server and 240
HDDs. Details of the software stack have not been re-
leased, but a Pelican-like storage stack is needed as most
HDDs will be in standby. The other five racks are based
on other cold storage designs and we refer to them as
Rack A to Rack E. Table 1 summarizes the number of
HDDs, the number of resource domains and the average
HDDs per resource domain for each of them. All the
designs have multiple bandwidth resource domains, to
capture the bandwidth from the HDDs to the server, as
well as power, cooling and vibration domains. Racks A
to E are all credible physical hardware design points for
cold storage which vary the power, cooling, and HDD
density (hence vibration and HDD-to-server bandwidth).
We have built out Pelican and Rack D. We put no upper
bounds or increment limits on the resource domains for
any resources in any rack.

Flamingo uses a rack-scale discrete event simulator to
estimate the performance of rack with the synthesized
data layout and IO scheduler. The simulator is based
on the discrete event simulator used to evaluate Pelican,
which we have extended to support arbitrary physical
rack topologies and to use the constraint-aware IO sched-
uler described. It models HDDs, network bandwidth and
the server-to-HDD interconnect, and is configured with
mount, unmount and spin up latency distributions from
measurements of real archive class HDDs and has been
cross validated against real rack-scale storage designs
(for example the prototype Pelican [8]).

In the experiments we used a cluster of servers, each
with two Intel Xeon E5-2665 2.4Ghz processors and 128
GB of DRAM. For each configuration we do a parameter
sweep over a range of possible workload characteristics.
A sequence of client read requests for 1 GB files is gener-
ated using a Poisson process with an average arrival rate
λ = 0.0625 to 5. Beyond λ = 5 the network bandwidth
becomes the bottleneck for all racks. The read requests
are randomly distributed across all the files stored in the
rack. We simulate 24 hours, and gather statistics for the
last 12 hours when the simulation has reached a steady
state. We believe this workload allows comprehensive
comparison of the rack configurations.

4.1 Flamingo performance

First we evaluate the performance of Flamingo exploring
the resource design space and creating the configurations
from the initial rack description. For each of the seven
racks, the time to generate the derived configurations is
less than three seconds on a single server. Figure 3(a)
shows the total number of configurations derived for each
rack. Across each of the racks there is wide variance in
the number of configurations derived, 649 to 1,921. The
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Figure 3: Base performance of Flamingo.

number of configurations is a function of the resource
domains and which ones are the bottleneck resource in
each configuration. Across all racks 7,547 configurations
are created.

Figure 3(a) also shows for each rack the fraction
of configurations for which the generated data layout
was considered efficient or inefficient by Flamingo. If
Flamingo finds a configuration in which (i) all HDDs are
allocated to a group, and (ii) all HDDs in a single group
can be migrated from standby to active concurrently, it
uses the fast heuristics as described to determine if the
solution is efficient or inefficient. If these two conditions
do not hold then the configuration is marked as having
no solution, however for all 7,547 configurations a lay-
out (efficient or inefficient) was found.

Figure 3(b) shows the fraction of power, cooling and
vibration provisioned in each configuration derived from
the Pelican rack. Each point represents a configuration
and power and cooling are shown on the two axes, nor-
malized to being fully provisioned. Hence a value of
(1,1) means that the resource is sufficiently provisioned
to have all HDDs in the rack in their most resource-
consuming operating state. The vibration domain is ex-
pressed using the color of the point, again normalized
to fully provisioned. Although showing only three re-
sources, Figure 3(b) demonstrates how Flamingo tra-
verses the design space, incrementing the bottleneck re-
source each time. For each configuration we increment
the bottleneck resource by the smallest unit that will al-
low a single HDD to be in a more expensive operating
state. However, this does not necessarily mean that the
bottleneck resource changes from the previous config-
uration. In Figure 3(b) the impact of this can be seen
where there are multiple power configurations for each
step in the cooling.

Execution time Next, we consider the execution
time of Flamingo. The solver used to synthesize the data
layout and IO scheduler for each configuration runs as
an independent single threaded process for each configu-
ration. Flamingo runs one instance of the solver on each

core of each server it is run on. Figure 3(c) shows a CDF
of derived racks versus time taken to generate the data
layout and the IO scheduler configuration for each con-
figuration. The time taken is a function of the complexity
of the configuration and the number of HDDs, and for all
except those for Rack E, none takes more than 9 min-
utes. In the worst case, for a configuration derived from
Rack E it takes 3 hours and the median for this rack is 20
minutes. The time taken for Flamingo is heavily domi-
nated by the number of HDDs; as the number of HDDs
increases the size of the state space to search increases
faster then linearly. Table 1 shows Rack E has 1,920
HDDs, almost a factor of two larger than the other racks.
Our solver is deterministic and can report as it executes
both the current best found solution and the fraction of
the search space it has explored.

Once the data layout and IO scheduler parameters
have been created, Flamingo runs the simulator to esti-
mate the performance of each configuration. The time
taken by the simulator is a function of the workloads
evaluated. The workloads used in this paper allow a com-
prehensive exploration of the relative performance and
across all 7,547 configurations we observed a mean exe-
cution time of 45 minutes per configuration, with a max-
imum of 83 minutes. As with the parameter generation,
the simulations can be run concurrently.

4.2 Data layout quality
Next we quantify the quality of the data layout generated
for each configuration. Flamingo considers a layout as
efficient or inefficient, and stops searching once it finds
one it considers efficient. Analytically it is impossible
to determine if a layout is optimal at these scales, so in-
stead we use two metrics. The first metric is the num-
ber of groups that can be concurrently spun up, which is
a good indicator of performance under low load. For a
configuration we can determine the bottleneck resource,
and using that we can calculate an upper bound on the
number of groups that should be able to be concurrently
active in their highest state (m). We then generate a ran-
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Figure 4: Quality of data layout.

dom test ordering of the n groups in the configuration.
For each configuration we greedily try to spin up the first
k groups, where k = 1,2,3, ...,m. If we are able to mi-
grate the HDDs in the k groups from standby to active
concurrently without violating any resource constraints,
we remove the group at position k in the test ordering
and try again. Eventually, there are no further groups to
remove from the test ordering and k < m, or k = m. We
repeat this 250,000 times ensuring a unique ordering for
each trial and record k and normalize it to m. We refer to
this as the low load quality metric and reflects the level
of concurrency achievable under low load.

The second metric is the number of groups that can be
concurrently active and still allow an additional group to
become active. This is a good indicator of performance
under high load. We use the same process to calculate
this metric, except instead of concurrently migrating the
HDDs in all group from standby to active, we leave k−1
active and try to transition the kth group to the spinning
up state. Again, we can calculate the value of m for this
metric using the bottleneck resource. We refer to this as
the high load quality metric. If, for all 250,000 trials,
both metrics are one then the data layout is considered
good otherwise it is considered bad. These metrics are
not used by the Flamingo solver as they take many hours
to compute for each single solution, and need to be com-
puted for all the large number of solutions considered.

Table 2 compares using these metrics to the fast
heuristics used by Flamingo showing the total number of
configurations, the number of these configurations that
Flamingo said it could generate an efficient layout, and

Rack Configurations Efficient False Positive False Negative
OCP 1921 1921 0 0
Pelican 747 369 0 0
Rack A 1421 1421 0 0
Rack B 1152 1152 0 0
Rack C 973 909 361 0
Rack D 649 205 0 9
Rack E 684 135 39 39

Table 2: Quality of Flamingo’s data layout heuristics.
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Figure 5: Flamingo vs Pelican.

then the number of false positives and false negatives.
A false positive is a configuration marked efficient by
Flamingo but bad by the metrics. A false negative is
marked inefficient by Flamingo but good by the metrics.
Three racks: OCP, Rack A and Rack B, have efficient
and good layouts for all configurations.

In order to understand further the quality of inefficient
configurations, as well as the false positives and nega-
tives, Figure 4 shows a CDF of configurations versus
both quality metrics when the metrics are not one (OCP,
Rack A and Rack B omitted). The low load metric is
not 1 for only three racks, and in all cases the median is
above 0.9. Under the high load metric all solutions are
at 0.75 or higher for the four racks. This shows that even
when a rack is not efficient, the quality of the solutions
is high.

4.3 Storage performance

The last set of experiments evaluate the rack performance
when using the IO scheduler and the data layout synthe-
sized by Flamingo. First we compare how Flamingo per-
forms to a manually-designed solution. To do this we
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take the rack configuration which is equivalent to the
Pelican rack used in [8] and compare its performance
with the Flamingo generated data layout and IO sched-
uler constraints.

We first consider the time to first byte, which is the
time between a request being issued by a client and the
first data byte being sent to the client. This includes all
queuing and spin up delays. Figure 5(a) shows the time
to first byte as a function of the workload rate. Flamingo-
Pelican is using the data layout and IO scheduler config-
uration synthesized by Flamingo and Pelican is the man-
ually designed layout and IO scheduler. The time to first
byte for Pelican and Flamingo-Pelican is virtually identi-
cal across all workload rates. This is true for other prop-
erties measured by the simulator, including throughput,
which are omitted due to space constraints.

The fact that Flamingo-Pelican matches the original
performance is interesting. The data layout differs sig-
nificantly from the original Pelican layout. Figure 5(b)
shows a representation of the rack as a 3D array of HDDs
shown from the front, side and top comparing the layout
of group zero for each. Each colored square represents a
HDD, and other groups can be thought of as rotations of
this group. Flamingo groups cover different individual
resource domains compared to the original Pelican.

The next experiment explores the ability of Flamingo
to exploit the resources provisioned in each rack. Ideally,
the performance should increase as the provisioning of
the bottleneck resource increases. For each of the 7,547
configurations for the seven racks we measure the time
to first byte as a function of resource provisioning. Fig-
ure 6(a) shows the time to first byte versus the resource
provisioning. Due to lack of space, we use a single
(high) workload rate of 4 requests per second and only
show results for one randomly selected rack (Rack E).
The other racks show similar trends in the results. To
quantify the resource provisioning we use its M value
normalized by the total number of HDDs in the rack rep-
resenting a fully provisioned rack. Recall that M is the
maximum number of HDDs that can be concurrently in
their highest cost operating state, and is a function of
the bottleneck resource. While deriving configurations,

Flamingo increases the bottleneck resource budget by a
value δ which is potentially less than the cost of allow-
ing a HDD to operate in the highest cost operating state,
hence several configurations can share the same M value.

From Figure 6(a) we see that the time to first byte gen-
erally decreases as provisioning increases, meaning that
Flamingo is able to adapt to the increased resource pro-
visioning, achieving better performance with more re-
sources. The performance improvement is not mono-
tonic: in some cases, the resource provisioning increase
does not decrease the time to first byte. This happens
because Flamingo attempts to optimize for general per-
formance across multiple metrics, rather than just time
to first byte. Figure 6(a) also shows that the decrease
in time to first byte is not linear as the provisioning is
increased. When resources are scarce, even a slight in-
crease in provisioning leads to significantly better perfor-
mance. For example, increasing the provisioning from
0.06 to 0.1 leads to a time to first byte decreased by
nearly 80% on average for Rack E. We observe this trend
for all seven racks, meaning relatively low provisioned
racks can achieve a performance close to fully provi-
sioned ones. Intuitively, this happens because for the
given workload, resource provisioning within the rack is
not necessarily the bottleneck. At some point, the perfor-
mance becomes limited by external factors such as the
bandwidth from the rack to the data center fabric (in this
case 40 Gbps). Notably, the exact benefit of increasing
resources is very different for each initial rack descrip-
tion, e.g. for Rack A, the time to first byte decreases by
80% only when resource provisioning reaches 0.68.

To illustrate this further we use a low workload rate of
0.0625 requests per second. Figure 6(b) shows the time
to first byte versus the resource provisioning for Rack E.
For this low workload rate, the IO scheduler is unable
to do extensive batching of requests and needs to fre-
quently transition between groups. The rack bandwidth
is not the bottleneck and the IO scheduler can benefit
from more resources in the rack to increase concurrency
of group transitioning. As a result, the time to first byte
decreases almost linearly as provisioning increases. Re-
source provisioning depends on multiple factors internal

11



and external to the rack. Tools like Flamingo provide
great benefit when co-designing a rack and storage stack
for a particular workload.

The final experiment evaluates the benefit for the
IO scheduler to dynamically manage the available re-
sources. Pelican made the simplifying assumption that
HDDs could have two states; standby and active. This
leaves some resources unused which means that it will
be able to keep fewer groups concurrently active, but has
the benefit of being much simpler and we refer to this
as a conservative IO scheduler. Allowing an arbitrary
number of states with differentiated costs requires the IO
scheduler to track transitions between each state for all
HDDs, and ensuring that budgets will not be violated by
each transition to a new state. We compare the conser-
vative and the Flamingo schedulers using the OCP rack.
For this default configuration power is the bottleneck re-
source, with sufficient provisioning to allow two groups
to spin up concurrently. Figure 6(c) shows the through-
put as a function of the workload rate. For workloads
with higher request rates of 2 or more requests/second,
the Flamingo IO scheduler outperforms the conservative
one. It does this because, at the higher loads, it can keep
more groups concurrently spinning; it is able to keep up
to three groups concurrently spinning as opposed to two
for the conservative scheduler, allowing one more re-
quests to be processed in parallel. For lower workload
rates, the performance is dominated by the number of
groups that can spin up concurrently as the IO sched-
uler needs to frequently transition between groups, so
the Flamingo IO scheduler offers no additional perfor-
mance. It should be noted that if the HDDs can oper-
ate in lower power RPM states which offer faster transi-
tioning to active, the benefit of the finer-grained resource
management in the Flamingo IO scheduler would enable
increased performance for all workload rates.

5 Related Work

Flamingo addresses the challenges of designing rack-
scale systems for near-line storage. To reduce costs
physical resources are typically constrained. The stor-
age stack needs to maximize performance without vio-
lating the constraints making data layout and IO schedul-
ing key. In contrast, traditional storage is provisioned for
peak performance. There have been proposals for sys-
tems like MAID [10], as well as other power efficient
storage systems [22, 18, 4, 24, 32], that allow idle disks
to spin down. Data layout and mechanisms to handle
spun down disks is important in all their designs. Perga-
mum [22] used NVRAM to handle meta-data and other
small writes, effectively providing a write-back cache
used when the disks are spun down. Hibernator [32]
supports low RPM disk modes and dynamically deter-

mines the proportion of disks in each mode in function of
the workload. Rabbit [4], Sierra [24] and PARAID [27]
achieve power-proportionality through careful data lay-
out schemes, but in these systems fine-grained provision-
ing of physical resources is not done at design time.

There has been work on automatic configuration of
RAID storage [21, 30, 29, 3, 1, 6, 7], for example to de-
sign RAID configuration that meet workload availability
requirements [3, 1, 6, 9]. These use a solver that takes
declarative specifications of workload requirements and
device capabilities, formulates constraint representation
of each design problem, and uses optimization tech-
niques to explore the search space of possible solutions
computing the best RAID level for each logical unit of
data on disk. Designs often include an online data mi-
gration policy between RAID levels [30, 7]. Flamingo
is designed to optimize the physical resource utilization
in the rack, working at a larger scale and explicitly han-
dling a large number of constrained resources.

Tools to manage the design and administration of en-
terprise [26, 5], cluster [15] and wide-area [13] storage
that optimize for data availability, durability and capital
cost as primary metrics offline but do not consider fine-
grained resource management or online IO scheduling.

Flamingo provides quantitative answers to questions
about hypothetical workload or resource changes and
their impact on performance. This is similar to prior
work [25, 23, 11]. For example, [23] evaluates different
storage provisioning schemes, which helps understand-
ing trade-offs. In contrast, Flamingo complements the
analysis by creating the data layout and IO scheduling
policies for each configuration.

More generally, [14] proposes automatically generat-
ing data layout for data-parallel languages. Remy [31],
given network characteristics and transport protocol tar-
gets, synthesizes a network congestion control algorithm.
Flamingo has the same high-level goal: to make systems
less brittle.

6 Conclusion

Flamingo is designed to simplify the development of
rack-scale near-line storage. Flamingo has two high-
level goals: first to synthesize the data layout and IO
scheduler parameters for a generic storage stack for
cloud near-line storage racks. The second aspect is that
Flamingo supports the co-design of rack hardware and
software, by allowing an efficient exploration of the im-
pact of varying the resources provisioned within the rack.
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