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Abstract

Modern data center (DC) applications require high cross-
rack network bandwidth and ultra-low, predictable end-
to-end latency. It is hard to meet these requirements in
traditional DC networks where the bandwidth between
a Top-of-Rack (ToR) switch and the rest of the DC is
typically oversubscribed.

Larry is a network design that allows racks to dynam-
ically adapt their bandwidth to the aggregation switches
as a function of the traffic demand. Larry reconfigures
the network topology to enable racks with high demand
to use underutilized uplinks from their neighbors. Oper-
ating at the physical layer, Larry has a predictably low
traffic forwarding overhead that is adapted to latency
sensitive applications. Larry is effective even when de-
ployed on a small set of racks (e.g., 4) because rack traf-
fic demand is not correlated in many DC workloads. It
can be deployed incrementally and transparently co-exist
with existing non-reconfigurable racks. Our prototype
uses a 40 Gbps electrical circuit switch we have built,
with a simply local control plane. Using multiple work-
loads, we show that Larry improves tail latency by to
2.3x for the same network cost.

1 Introduction

There is a rapid adoption of high bandwidth networking
in the DC. It is now common to deploy 40 Gbps to the
server [59], and 50-100 Gbps is becoming popular [1].
An increasing number of applications are capable of con-
suming that bandwidth [22, 24, 34, 36, 42, 51] and re-
quire low and predictable latency [24, 41, 59]. Emerging
techniques such as disaggregation of DRAM and non-
volatile memory are also sensitive to latency and packet
queuing [26]. This is a challenge because a large frac-
tion of the traffic for these applications is not rack lo-
cal [44,59], and rack uplink bandwidth is typically over-
subscribed [28,47] which leads to rack-level congestion.

This paper presents Larry, a network design that ad-
dresses rack uplink congestion by dynamically adapting
the aggregate uplink bandwidth of the rack to its traf-
fic demand. For that, racks with congested uplinks use
spare uplink bandwidth from physically adjacent racks.
Larry targets workloads in which rack traffic is bursty
and loosely correlated across racks, and we observe these
properties in traces from our DCs.

Using local resources for traffic offloading has been
first proposed by GRIN [18]. However, GRIN offloads
traffic through multiple hops at layers 2 or 3. This typi-
cally adds 200-500 ns per hop even in cut-through mode
and without queuing [6, 26, 60]. For some applications
that require round trip times of a few microseconds [24,
26], this could represent a non-negligible latency over-
head. In contrast, Larry is reconfigured at the physical
layer, and only adds a predictable end-to-end forwarding
overhead of a few nanoseconds. This local reconfigura-
bility differentiates Larry from prior work on fully recon-
figurable networks [23,25,27,29,30,39,40,43,50,54–56].
These systems typically redesign the entire DC network,
making them efficient, but hard to deploy in practice, es-
pecially in existing data centers.

Larry uses a custom electrical circuit switch and ex-
ploits unused ports on the ToRs. Larry is designed
for small-scale deployments of physically adjacent racks
(e.g., 4 to 6) called rack sets. In a rack set, the ports
used on each ToR to connect to the aggregation switches
are instead connected to the circuit switch. The cir-
cuit switch is then connected to the set of aggregation
switches that would have been connected to the ToRs.
Any non-cabled ToR ports are also connected to the cir-
cuit switch. This does not change the number of uplinks
to the aggregation switches, but creates a network re-
configurable at the physical layer and local to the rack
set. Once configured, traffic between ToRs and aggre-
gation switches is transparently forwarded by the circuit
switches at the physical layer. Within the rack set, a rack
with high traffic demand can hence forward its traffic
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Figure 1: Impact of local reconfigurability on tail FCT.

through underutilized uplinks on other racks. The prop-
erties of our design are the following:
Incremental Deployment. The smallest unit of deploy-
ment is the rack set. Therefore, if a cloud provider suffers
from congestion in a specific service (e.g., storage racks),
local reconfiguration can be deployed only on the racks
used for that service.
Transparency. Larry works with the DC network in
place: any existing global controllers see links failing
and being established, as reconfiguration occurs at the
physical layer. No reconfiguration-specific routing state
is needed outside the rack set and reconfiguration events
are only visible to ToR and aggregation switches. We use
off-the-shelf ToR and aggregation switches, and no soft-
ware or hardware changes are required on the servers to
use the extra uplink bandwidth.
Cost efficiency. All the racks in the rack set are physi-
cally close to each other, which allows, even at 100 Gbps,
to use cheaper passive cables for all additional connectiv-
ity. No extra connectivity is required in the rest of the DC
network. Further, our circuit switch design uses simple,
commercially available crosspoint ASICs [7].
Low latency. The crosspoint ASIC forwards the incom-
ing signal from the high-speed serial data link without
processing any packets, hence the forwarding latency of
the circuit switch is within a few nanoseconds [7].

Our evaluation shows that uplink reconfiguration can
be done with low overhead and augmenting a traditional
oversubscribed topology with Larry increases the perfor-
mance per dollar by up to 2.3x.

The rest of the paper is organized as follows. Sec-
tion 2 describes the benefits and challenges of local re-
configurability. Section 3 details the design of Larry that
implements local reconfigurability at the physical layer.
Section 4 discusses the practicality of our approach. Sec-
tion 5 evaluates our design. Finally, Section 6 presents
the related work and Section 7 concludes.

2 Local Reconfigurability

We now describe the benefits and challenges of local re-
configurability.

2.1 Is Local Reconfigurability Useful?
Local reconfigurability reduces rack uplink congestion
by using underutilized uplink bandwidth from a small set
of adjacent racks. We now show that some key DC work-
loads do exhibit low traffic correlation across racks and
can benefit from local reconfigurability. For our analysis,
we assume that any uplink can be used by any rack in a
rack set composed of m physically adjacent racks. We
also assume that the core network is fully provisioned.
These optimistic assumptions allow to estimate an upper
bound on the performance of local reconfigurability and
will be refined in latter sections.

We use two DC traces and show that they exhibit low
rack traffic correlation. The first trace contains all files
accessed by a large-scale cloud service over a week in
mid-2016. The traces do not differentiate between local
accesses to disk and remote accesses over the network.
To measure the impact of data transfers on the network,
we simulate a small local write-back cache at the com-
pute node to which all accesses are made. Files that have
not been accessed for more than a day are de-staged to
the DC storage tier over the network. On a cache miss,
a file is read from the storage tier over the network. We
group the network transfers by rack, then form groups of
eight randomly selected racks1. For every group of racks,
we replay all the network transfers between the storage
tier and the cache in a flow-based simulator that com-
putes the flow completion times (FCT) assuming max-
min fairness bandwidth allocation and one flow per file
access.

In the simulated topology, each rack is provisioned
with u uplinks, such that a rack set with m racks has u×m
uplinks. In the rack set, at any point in time, each rack
gets a subset of the uplinks that is proportional to its de-
mand. We compute the tail FCT for each sub-trace for
u = 4 and m = 1,2,4,8 and use m = 1 (all racks are in-
dependent) as a baseline. Figure 1 shows the CDF of the
99th percentile FCT for all the simulated sub-traces for
different rack set sizes, normalized to the baseline. We
can see that tail FCT is improved for all rack set sizes,
showing that local reconfigurability reduces congestion.
The results also show that for this workload, there is only
a marginal benefit of having rack sets larger than 4 racks.

The second trace was obtained from the authors
of [27], and covers four clusters from a large cloud
provider. As described in [27], the clusters have between
100 and 2,500 racks and run a mix of workloads. The
results qualitatively show a similar trend: when operat-
ing at a scale of 4 to 8 racks, local reconfigurability can
reduce most of the uplink bandwidth congestion during
peak demand.

Notably, in the first trace, demand is not correlated de-

1The trace lacks rack placement information.
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spite the fact that all racks host the same workload (stor-
age). This suggests that rack traffic decorrelation is a
property of the workload. We hence expect the analysis
to hold if racks were chosen according to their physical
proximity. Other studies of workloads [28, 40, 44] show
the skew at rack-level. In the public cloud, services and
applications are used by a large number of clients with
decorrelated demand, and services often use several gen-
erations of rack hardware. We expect that local reconfig-
urability can be beneficial to a number of key workloads
in that context.

2.2 Design Challenges
Several network designs can enable local reconfigurabil-
ity. This section discusses the challenges of implement-
ing local reconfigurability at layer 2, thereby motivating
the use of layer 1 circuit switching. The number of ag-
gregations switch ports connected to the core network
per rack is the same for all described designs.

Local reconfigurability can be implemented at layer 2
by enabling non-shortest path routing between ToR and
aggregation switches. This can be done by either adding
extra packet switches between ToRs and the aggregation
layer, or by interconnecting spare ToR ports in a multi-
hop topology. Figure 2(a) shows one simple example
of the latter, with four ToRs interconnected into a ring
topology2. A Software-Defined Network (SDN) con-
troller monitors the uplink bandwidth usage and balances
traffic in the rack set. However, this introduces extra for-
warding latency as store-and-forward packet switching
adds approximately 1 µs per hop. Cut-through packet
forwarding reduces the latency down to 200 to 500 ns
per hop [6, 26, 60] but is not supported by all switches.
Gao et al [26] describe emergent applications with a 3µs
round trip latency budget, for which extra packet for-
warding could increase round trip latency by 30% or
more. In addition, for ToR-to-ToR topologies, there will
be worst case scenarios with fate sharing of the ToR-to-
ToR links leading to congestion. In Figure 2(a), racks
have two uplinks, but each of 1 and 2 demands 4 up-

2Alternative topologies are also possible.

links. These racks hence forward half of their demand
to the idle racks 3 and 4. This causes congestion on the
ToR-to-ToR links such that 1 and 2 cannot use all the
available uplink bandwidth. Finally, this increases the
unpredictability of the network, as the latency of a flow
depends on the uplink through which it is forwarded, and
its throughput is impacted by flows from other racks on
the ToR-to-ToR links. In the control plane, this requires
custom routing, fine-grain bandwidth management and
consistent updates to sets of SDN-enabled switches. This
increases the probability of software bugs in the con-
troller [46] and reconfiguration latency [31].

GRIN [18] implements local reconfigurability within
a rack by interconnecting spare ports on servers’ NICs
and allowing a busy server to forward traffic through idle
servers in the rack. This approach can be extended to en-
able local reconfigurability across racks by interconnect-
ing servers on neighboring racks as shown in Figure 2(b).
In addition to the extra hop latency, the flexibility is lim-
ited by the number of spare ports per NIC. At 40 Gbps
per port and beyond, NICs with more than two ports (or
multiple NICs per server) are not common, which limits
the approach to pairs of servers. Packet forwarding and
traffic prioritization between NIC ports need to be done
in hardware, which is not supported by all NICs.

Finally, avoiding extra latency is possible with extra
cables and ports at ToR or aggregation switches. For ex-
ample, spare NIC ports on the servers can be connected
to neighboring ToRs, as proposed by Liu et al [40] (see
Figure 2(c)). However, in that case, the number of ports
required for server connectivity increases by at least a
factor of p (if p-port NICs are used) and it is unlikely that
ToRs have enough spare ports. Alternatively, all spare
ports on the ToRs can be connected directly to aggrega-
tion switches, which either requires additional aggrega-
tion switches and extra optical cables, or increased over-
subscription at the aggregation layer.

3 Overview of Larry

We enable low, predictable forwarding latency by en-
suring that any extra forwarding is done at the physical
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Figure 3: Architecture overview.

layer. We achieve this by using a reconfigurable fabric at
the rack set that operates at the physical layer and allows
uplinks to be migrated from one rack to another. The fab-
ric enables racks to adapt their uplink bandwidth while
appearing as a collection of independent racks to the rest
of the DC. Uplinks are used to forward all the traffic from
the ToRs to the aggregation switches. When a ToR is ex-
periencing congestion to the core network, a local con-
troller can physically migrate uplinks to that ToR from a
non-congested ToR in the rack set. For example, the ToR
could have 8 uplinks, and then have 2 additional uplinks
migrated to it. The packet-switched network literally ob-
serves the two uplinks as disconnecting, and then con-
necting to the new ToR. We use Equal-Cost Multi-Path
(ECMP) routing on the ToRs and aggregation switches
to balance traffic across uplinks [33]. This is done at the
flow granularity, such that for each packet, the switches
hash the TCP five tuple to determine the port for the next
hop. Uplink migration is enabled by deploying a custom
low-cost low-radix electrical circuit switch in each rack
to complement the existing ToR packet switches.

3.1 The circuit switch

An electrical circuit switch forwards the electrical signal
received on one port through a circuit established to an-
other port on the switch. The switching cannot be done
per packet: once established, a circuit is expected to ex-
ist for hundreds of milliseconds or longer. The circuit
switch does no packet header inspection or buffering, as a
result the latency of transferring the signal from one port
to another is on the order of 2 ns [7]. This is low enough
to be transparent to the upper layers of the network. The
packet switches connected to the circuit switch are un-
aware of its presence, and perceive the link as being a
cable. A relatively simple hardware design using cross-
point ASICs [2, 7, 10] available today can have up to 48
100 Gbps ports. Section 5.1 describes the design of a
prototype switch we have built.
Cost. The hardware architecture of crosspoint ASICs
is typically simpler than merchant silicon. Crosspoint
ASICs have no packet buffers or packet processing logic.

In addition to that, because they do not need to pro-
cess packets, the incoming signal from the high-speed
serial data link does not need to be de-multiplexed to
lower speed lanes, as done in packet switches. Cross-
point ASICs hence do not require SerDes at the inputs
and outputs3 which are typically challenging to design
at high speed rates [15]. The switch core itself is hence
simpler and switching is done at the line rate. In equiv-
alent manufacturing processes, crosspoint ASICs should
take less die area and have a lower power consumption
for the same number of I/O lanes.

While the cost of the switch depends on the cost of its
ASIC, it is harder to do a fair comparison of packet- and
circuit- switches due to the cost of the other components,
the difference of production volume, etc. Section 5.2.3
includes a sensitivity analysis on cost.

3.2 The reconfigurable fabric

Figure 3 shows the topology of a reconfigurable fabric
that connects a set of racks to the aggregation switches.
Each rack contains a set of servers connected to an un-
modified ToR. ToRs and aggregation switches operate at
layer 2 and above. For simplicity, in this section we as-
sume that the reconfiguration is done by a single large
circuit switch, as depicted on the left-hand side of Fig-
ure 3. In practice using a single circuit switch has scal-
ing and deployment issues, and we distribute the circuit
switch using one small-radix circuit switch per rack. The
circuit switches are interconnected as shown on the right-
hand side of Figure 3. We will describe this in more de-
tail in the next section.

In a traditional network design, a ToR is connected
to all the servers in the rack and has several (e.g., 8)
uplinks connected to the aggregation switches. In our
design, only a fraction of these uplinks is directly con-
nected to the aggregation switches. We keep at least two
(full green lines in Figure 3) to ensure the rack is still
connected to the core if an aggregation switch fails while
no uplinks are available through the circuit switch. The

3A SerDes is a pair of functional blocks that convert data between
a fast serial link and slower parallel interfaces in each direction.



remaining ToR ports (e.g., 6), that would have been con-
nected to aggregation switches are instead connected to
the circuit switch. For each of these, a port on the circuit
switch is then connected to the aggregation switch. Fi-
nally, any unused ports on each ToR are also connected to
the circuit switch. Unused ports typically exist for topo-
logical reasons (e.g. due to oversubscription or mismatch
between the number of servers per rack and the switch
radix). The links from the circuit switch to the aggrega-
tion switches are active (optical) cables, and are shown as
gray double lines in Figure 3. All the links from the ToR
to the circuit switch use passive (copper) cables (dashed
blue in Figure 3). At current price points, this reduces
the cabling costs: at 100 Gbps, the transceivers account
for a large part of the cable cost. While transceiver costs
are currently dropping, passive cables are cheaper than
the active ones [45]. At 100 Gbps, passive cables are
available up to 5 m [16], which is long enough for rack
sets of at least 4 racks. As the data rate increases, the
loss of the passive cable is typically reduced by increas-
ing the thickness of the cable. We have successfully used
our 40 Gbps circuit switch prototype with long passive
cables to interconnect a row of 4 racks. An important as-
pect of our design is that all the extra connectivity is done
at lower cost using spare ToR ports, passive cables and
circuit switch ports. The number of aggregation switch
ports and active cables used in our design is the same as
in a traditional topology with the same level of oversub-
scription.

The circuit switch can connect any of its uplinks to the
aggregation switches to any ToR in the rack set. On the
circuit switch, the number of uplinks is lower than the
number of links to the ToRs. Therefore, a fraction of the
ToR ports will not be connected by a circuit to an ag-
gregation switch port at a given point in time. Such dis-
connected links have no PHY established and are seen as
disconnected ports by the ToR. These links are used by
the ToR to get extra bandwidth on demand. Consider a
scenario where each rack has on average 8 uplinks to the
aggregation switches, and this is not sufficient to satisfy
the demand on one rack. With the reconfigurable fab-
ric, any links that are underutilized on other racks in the
rack set can be migrated to the rack experiencing high de-
mand. The number of extra uplinks that can be migrated
is a function of demand across the racks, and is at most
the number of extra unused ports connected to the cir-
cuit switch from each ToR. More formally, if each rack
has on average U uplinks to the aggregation switches, a
ToR with S directly connected uplinks and L links to the
circuit switch will be able to have between S and S+L
uplinks (S ≤ U ≤ S+L). The uplink bandwidth alloca-
tion on each ToR is managed by a local controller that
monitors the set of ToRs in the rack set and reconfigures
the circuit switches through a separate control plane. We

will describe this in Section 3.4.
Physical layer reconfiguration enables low forwarding

latency on all uplinks regardless of their physical loca-
tion in the rack set. It also improves performance and
predictability: there is no fate sharing of uplinks by mul-
tiple racks in the rack set. So far, we considered for sim-
plicity that each rack set had a single large circuit switch.
However, this is unpractical as even at small scales (e.g.,
4 racks), the number of reconfigurable fabric ports ex-
ceeds the port count of the largest electrical circuit switch
capable of 100 Gbps. This makes the cost prohibitive.
Further, using a single circuit switch per rack set intro-
duces a single point of failure.

3.3 Distributing the circuit switch

To simplify deployment and management, we use one
circuit switch per rack. Each ToR needs to be attached
to all the circuit switches in the rack set. The links to
aggregation switches are distributed across the circuit
switches, ideally with (at least) one link to each aggre-
gation switch per circuit switch (see Figure 3 right hand
side). This reduces the flexibility compared to a sin-
gle large circuit switch: some pairs of ports cannot be
connected by a circuit. For example, a port attached to
one circuit switch cannot have a circuit to a port on an-
other circuit switch. Is this flexible enough to operate
efficiently?

To answer this, the key insight is that allowing any
pairs of ports to be connected provides more flexibility
than it is necessary for our design. The reconfigurable
fabric can be represented as a bipartite graph in which
vertices are ToR and aggregation switch ports and edges
are circuits established between them. As the traffic de-
mand changes, the circuit switch instantiates the bipartite
graph that is the best adapted to the demand. Intuitively,
since the graph is bipartite, there is no need to guarantee
that any two ports can be connected, but only that each
ToR has the required number of uplinks.

To show that the latter can always be achieved, we de-
note L the number of links from each ToR to the circuit
switches and R the number of links from each circuit
switch to the aggregation switches (see right hand side
of Figure 3). We have L ≥ m because each ToR is con-
nected to every circuit switch and there is one per rack.
In addition to that, as described in the previous section,
on each circuit switch the number of links to the ToRs
is equal or higher to the number of links to the aggrega-
tion switches, i.e. L ≥ R. Intuitively, these constraints
over L mean that: (i) an uplink on a circuit switch can
be connected to any ToR in the rack set and (ii) there are
enough ports to ToRs on each circuit switch to allow all
uplinks to be connected at the same time.

Therefore, for any uplink assignment in the rack set,



there exist a circuit configuration on the circuit switches
that will instantiate the assignment. Furthermore, this
configuration can be easily found. Intuitively, if each
circuit switch is associated with a color, this problem
can be expressed as an edge f-coloring of the bipartite
graph [57]. The f-coloring problem is NP-complete in
general, however f-coloring of bipartite graphs can be
done in polynomial time [57]. It means that our set of
circuit switches can instantiate any uplink assignment.
In the evaluation, we show that our fabric achieves the
performance of a single large circuit switch.

The number of ports required on each ToR and circuit
switch is shown in Figure 3 (right hand side). On a ToR,
our design needs D+S+L ports: D to servers in the rack,
S directly attached to aggregation switches and L to the
circuit switches. On a circuit switch, L+R ports are re-
quired: L to the ToRs in the rack set and R to aggregation
switches. For example, assuming both 32-port ToR and
circuit switches, D = 16 ports to servers and S = 2 static
uplinks per ToR, our design can scale to m= 14 racks per
rack set. In this case, the limiting factor is the number of
ports on the 32-port ToRs, because half of the ToR ports
are used for in-rack connectivity. In practice, assuming a
standard hot-/cold-aisle DC layout, we are limited to 4-6
racks by 5 m passive cables. For the rest of the paper, we
conservatively consider rack sets with 4 racks only.

3.4 Controller

Each rack set has an independent lightweight controller
that monitors the network load within the rack set, de-
cides when to migrate the uplinks and manages the re-
configuration. The controller and circuit switches com-
municate through a control plane. In the prototype,
we use a pre-existing management switch connected to
board management controllers in the rack [14]. The con-
troller can specify a new port mapping for each circuit
switch, and read out the current port mapping. To ease
deployment, the controller is designed as a soft-state pro-
cess. When started, it is provided with a rack set config-
uration that describes the racks, circuit switches, ToRs
and aggregation switches associated with the rack set. It
then reads the current mapping from each circuit switch.

A key property of this controller is that it is local: it
requires no global information from the core network. It
only relies on the information that comes from the ToRs
in the rack set, not even from the aggregation switches.
We assume that ToRs enable a mechanism to query per
port traffic statistics, e.g., OpenFlow [12]. This design
simplifies deployment and reduces the impact on any ex-
isting global SDN controllers used in the core data center
network. We assume that the core network is configured
such that any flow-granularity traffic management is or-
thogonal to our design, but we do need the core network

to use a mechanism, e.g., ECMP, to efficiently spread the
network load across all possible paths to a rack4.

When the controller migrates an uplink, there are two
approaches to handling this from the perspective of the
core network. The clean approach is to ensure no packet
loss, which can be done by signaling to the global con-
troller that the link will fail before it is remapped. The
global controller then removes all routes that currently
use the link. After that, the circuit switches are re-
configured and the PHYs are established over the new
circuits. We assume that the ToRs can report physical
layer changes to the rack set controller. When the new
link is established, it is reported to the global controller
that starts to route traffic over it. This approach can
be for example easily implemented using off-the-shelf
OpenFlow-enabled ToRs and aggregation switches [4,9].

The dirty approach is to allow rack set controllers to
operate independently without communicating with the
global controller. This relies on the existing core network
monitoring and management mechanisms to see the re-
configuration as a link failure followed by a link repair.
However, this can lead to a small number of packets be-
ing lost on the failed links. The reconfiguration typically
occurs when the link is not highly utilized. In the eval-
uation, we show that reconfiguration delays are low, and
links are reconfigured infrequently, suggesting that this
approach will not cause significant traffic disruption.

The goal of the controller is to migrate uplinks to de-
congest ToRs with high demand. We do not modify the
end-systems, and the controller has no global visibility,
so it has no understanding of potential future demand for
either egress or ingress traffic to the racks. We therefore
use a greedy algorithm that periodically classifies each
ToR in the rack set as being underutilized or potentially
congested. To do this, the controller uses per-port byte
count metrics obtained from the ToRs. This can be done
at a fine-granularity: our prototype shows that if the con-
troller is managing a rack set with 4 racks, polling all 4
ToRs every millisecond would generate only in the order
of 10 Mbps of traffic.

The algorithm takes uplinks from ToRs which are not
being utilized, and migrates them to ToRs that could
potentially use more bandwidth. The greedy algorithm
computes the aggregate uplink utilization for each ToR,
in terms of ingress and egress bandwidth. It then deter-
mines the number of links from the ToR to the aggrega-
tion switches required to support that demand, consider-
ing a link fully utilized at 85% of its nominal capacity. If
it determines that a ToR could support the workload with
one or more links fewer than it currently has, the ToR is
marked as underutilized. If all the links to the aggrega-
tion switches are fully utilized, it is marked as congested.

4For example by using groups of type select in OpenFlow 1.3 [12,
53].



The controller knows the full topology of the rack set
and has a list of the circuit switches. For each circuit
switch, it greedily assigns an uplink from the most un-
derutilized ToR to the most overloaded ToR, records the
corresponding circuit configuration and re-computes the
link utilization. This happens until no more uplinks can
be reassigned, because either there are no more underuti-
lized uplinks, or all overloaded ToRs reached their max-
imum number of uplinks.

The controller is currently configured to be conserva-
tive to minimize the impact of reconfigurations on per-
formance. If all ToRs in the rack set are underutilized
no uplinks are migrated. If no ToRs are underutilized,
no uplinks are migrated even if other ToRs are congested
except if congestion is detected on a ToR that has less
than its fair share of the aggregation links attached to the
circuit switch. If so, we allocate the ToR the fair share of
links. This ensures that all ToRs get at least their base-
line uplink bandwidth under congestions across multiple
racks. The output of the algorithm is a circuit config-
uration for each circuit switch that instantiates the new
uplink assignment.

4 Discussion

This section discusses the feasibility of deploying Larry
in production DCs. We first focus on the features that
facilitate deployment:
Good failure resilience. A failure in one rack set does
not lead to failures in other rack sets or elsewhere in the
core network. The failure of the controller or any circuit
switch does not disconnect racks from the core network
as racks have direct connections to aggregation switches
and controller failures do not lead to inconsistent net-
work state. The rack set configuration state is stored in
persistent storage and the internal local state is soft. We
assume that a data center-wide service can monitor the
liveness of the controller, and restart it upon failure.
Transparency. The reconfiguration is scoped within a
rack set and is transparent to the end-systems. At the
physical layer, PHY loss and establishment events only
occur on the ToRs and aggregation switches. These
events are managed by a local rack set controller that
updates the mapping of links between the aggregation
switches and the rack set ToRs. Larry can operate with-
out modifications to the end-system operating system or
applications, or the firmware or hardware design of the
ToR or aggregation switches.
Support for incremental deployment. Larry does not
require any changes to the core network management
or operation. Existing cabling from the aggregation
switches to the racks can be used. Within a data cen-
ter, some sets of racks can have local reconfigurability
provisioned (e.g., storage racks), while other racks can

Figure 4: Prototype circuit switch.

be deployed without it. It is even possible, to retrospec-
tively fit this to deployed racks if needed.
Ease of deployment. State of the art reconfigurable
topologies can be hard to deploy and operate [48]. In
contrast, the sensitivity of Larry to environmental fac-
tors is negligible, and no specific operator experience is
required. Each rack needs a 1U slot for a production ver-
sion of the circuit switch.
Deployment Challenges. Larry requires extra cabling
across racks, which complicates rack provisioning. We
ensure that the additional cabling complexity is limited.
The cabling is scoped to a rack set and is symmetric:
all racks have the same number of extra cables to the
other racks in the rack set. Additional cables originate
on the ToRs and target the circuit switch. With a rack
set size of m it is feasible to have just m extra cables per
rack, where each cable carries multiple lanes similar to
original 100 Gbps cables that bonded ten 10 Gbps lanes.

The reconfigurability of the network in the rack set can
increase the link churn and create topological asymme-
try. Link churn and asymmetry exist in DCs today, and
prior work has already been done on efficient load bal-
ancing and neighbor discovery mechanisms to address
the associated challenges [20, 47]. Larry also increases
the routing state update rate on the switches. While
reconfiguration in the rack set is expected to be infre-
quent (see Section 5.2.4), this could induce overhead on
core network (T2) switches. Finally, the performance of
Larry can be improved by rethinking existing DC com-
ponents. In particular, the PHY negotiation mechanism
on the ToR and aggregation switches should be tuned to
minimize the link downtime.

5 Evaluation

Our evaluation aims to explore the benefits and over-
heads of deploying our design in a data center. We aim
to answer the following questions: (i) What are the over-
heads of reconfiguring the physical link? (ii) How does
Larry compare to static DC topologies with respect to
performance metrics and cost efficiency? and (iii) What
are the properties of the reconfigurable fabric?

For that, we first evaluate reconfiguration overheads



using a prototype circuit switch. Then, we explore the
properties of our design with data center workload traces
using discrete event simulation. Overall, our results show
that local reconfigurability improves the performance per
dollar of the network. The reconfiguration is infrequent,
mainly adapting the network to macro changes in the
workload and reconfiguration overheads are low.

5.1 Prototype

To demonstrate the viability of our design, we have built
a prototype circuit switch (see Figure 4). The circuit
switch has a 2U form factor with 40 front-facing QSFP+
ports. We use the M21605 asynchronous fully non-
blocking crosspoint switch ASIC from MACOM [7].
The ASIC supports up to 160 lanes at 10 Gbps per lane
and can connect any two lanes with an internal circuit.
Each QSFP+ port is internally connected to four lanes
on the crosspoint ASIC enabling 40 Gbps per port. The
crosspoint ASIC is controlled by custom firmware on an
ARM Cortex-M3 micro-controller on the switch. The
micro-controller has an Ethernet link to an external con-
trol plane and a parallel interface to the ASIC.

We emulate the egress/ingress traffic between a ToR
and its aggregation using two Arista 7050X packet
switches with 32 40 Gbps ports [3]. The packet switches
are both attached to the circuit switch and to each other
using passive copper cables. For traffic generation, we
connect 2 servers per packet switch. Each server has
a Mellanox ConnectX-3 40 Gbps NIC [5] and a dual
Intel Xeon E5-2660 v3 CPU at 2.6 GHz running Win-
dows Server 2016. All switches are connected to an Eth-
ernet control plane and controlled by a separate server.
The packet switches support OpenFlow and we use the
Floodlight OpenFlow controller to reconfigure the rout-
ing state of the switches during reconfiguration [13].

When we designed the switch, 100 Gbps network
components were not widely available. Today, this can
be implemented using for example the MAXP-37161
crosspoint ASIC that supports 25 Gbps per lane [8]. A
100 Gbps zQSFP+ port [17] uses 4 lanes so it is possi-
ble to build a circuit switch with 16 ports at 100 Gbps by
using four MAXP-37161 ASICs in parallel and routing
each lane of a zQSFP+ connector to a separate crosspoint
ASIC then back to another zQSFP+ connector. While
16 ports are enough to implement all the topologies de-
scribed in the evaluation, there exist up to 48-port cross-
point ASICs operating at the same bandwidth per lane.

5.1.1 Micro-benchmarks

We evaluate the reconfiguration overheads by measuring
the circuit switching time and its impact on throughput.
Switching time: We measure the time taken by the
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Figure 5: Prototype micro-benchmarks.

crosspoint ASIC to establish a circuit. For that, we con-
nect a high frequency oscilloscope to two spare ports on
the circuit switch. The oscilloscope measures the volt-
age output on lane 0 of each port. We use one of the
ports attached to a packet switch as a traffic generator.
We first set up a circuit between the packet switch and
the first port of the oscilloscope. We then connect the
packet switch to the second port and measure the time
taken by the signal to appear on the second port. Fig-
ure 5(a) shows the voltage generated by the signal over
time on both ports during reconfiguration. Initially, the
signal appears on the first port while the second port is
idle. After a transition period of 18.3 ns on average, the
signal appears on port 2, while port 1 becomes idle. We
ran the experiment 10 times and observed a reconfigura-
tion delay of 19.5 ns in the worst case, with a median of
18.27 ns. This is lower by about an order of magnitude or
more compared to other circuit switching proposals for
DC networks [27, 50] because electrical circuit switch-
ing requires no physical movement in the switch.
Throughput: We now measure the impact of adding up-
links on application throughput. We form two source-
destination pairs using the four servers such that traffic
for both pairs must traverse both packet switches. We
use NTttcp [11] to saturate the NIC bandwidth by creat-
ing 20 TCP flows, one per core, from each source to its
destination and measure the throughput at the destina-
tion with a 15 ms interval. Initially, there are no circuits
on the circuit switch, so packet switches can only use
one 40 Gbps link for all traffic. The link is fair-shared
across both source-destination pairs. We then set up a
circuit that creates an additional link between the packet
switches and configure them such that each source desti-
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Figure 6: Base performance with the Storage (top) and Production (bottom) workloads.

nation pair uses its own link. Figure 5(b) shows the re-
ceive throughput on one receiver over time. We can see
that the application is able to benefit from reconfigura-
tion and doubles its average throughput. This is achieved
transparently without modifications to packet switches or
servers. The reconfigurable uplink is similar to a physi-
cal cable: we observe no packet loss on any of the links,
and both uplinks achieve the same throughput.

5.2 Simulations

We now demonstrate that deploying our design in exist-
ing DCs offers performance and cost benefits. At the
high level, we aim to answer the question: what is the
benefit of adding Larry to a static topology?

To scale our evaluation to our traces, we use a sim-
ple flow-level simulator that represents each TCP flow
by a single flow in the topology graph. We obtained
the simulator that has been used in [21, 37, 38]. It has
been cross-validated with real hardware in the context
of storage [21] and offers a good trade-off between scal-
ability and accuracy. Each flow is routed through one
randomly chosen shortest path between the source and
the destination. Network components, including ToRs,
circuit switches and servers, are represented as vertices,
while edges simulate links. Each link is bidirectional,
has a bandwidth and keeps track of all the flows travers-
ing it at any time. The simulator computes the bandwidth
dedicated to each flow using max-min fairness. On flow
creation or completion, the throughputs of all impacted
flows are recomputed. Overall, this simulates the high-
level behavior of a typical TCP network with ECMP

routing. During reconfiguration, the topology graph is
updated, and all flow throughputs are recomputed. Un-
less otherwise stated we do not simulate the downtime on
links during reconfiguration as it typically occurs only a
few times per hour (see Section 5.2.4).
Topologies. Our baseline topology, denoted as static,
has m racks directly attached to aggregation switches.
The performance of the static topology depends on the
oversubscription at the ToRs. For Larry, we augment
the rack with a circuit switch and interconnect the circuit
and packet switches as described in Section 3. For both
topologies, we use 32-port 100 Gbps ToR and aggrega-
tion switches and have 32 servers per rack with 50 Gbps
per server as described in Section 3.3. We use rack sets
of 4 racks; the controller monitors traffic every 500 ms
and sets the link capacity threshold to 0.85. Evaluation
of alternative values showed no qualitative impact for the
examined workloads.
Performance metrics. The metrics of interest are FCT,
rack throughput and workload duration. The FCT is the
time span between the creation of the flow and its com-
pletion and directly impacts application performance. In
the following experiments, we focus on 99th percentile
FCT, denoted as tail FCT. We also measure the through-
put of each ToR every second by aggregating through-
puts of all the flows sent or received by the ToR and tak-
ing the maximum between ingress and egress through-
put. We compute the average throughput achieved by the
racks during the periods for which the rack is not idle. Fi-
nally, we measure the workload duration as the timespan
between the beginning of the first and the completion of
the last request. We now detail our evaluation workloads.



5.2.1 Workloads

Storage (open loop workload). We use the traces de-
scribed in Section 2.2. The data written to the storage
tier is stored on 159 storage racks. For each rack, the
writes are controlled by the storage service and are hence
uniformly distributed over the day. Reads are very bursty
and dominate over writes during peaks.
Production (closed loop workload). We use the traces
from [27] as described in Section 2.2 that are representa-
tive of a typical production cluster. The traces contain the
number of bytes sent each second between ToR source
destination pairs, without flow- or request-level informa-
tion. We model this as a closed loop workload with at
most one outstanding request between each source des-
tination pair. For a source-destination pair, each second
in which x > 0 bytes were sent corresponds to a request.
The request is sent at a throughput of x Bps. For large
requests that exceed 200 MB we use multiple flows to
leverage ECMP across all the uplinks. In a topology pro-
visioned for peak, each request finishes within a second
and the achieved throughput equals the throughput ob-
served in the trace. We detect the fully provisioned band-
width for each workload by down-scaling the link band-
width to the minimal bandwidth that allows every request
to finish on time for a given workload. Then, we over-
subscribe the network and examine the impact on per-
formance. Namely, oversubscription introduces queuing
delays since there is only one outstanding request per
source destination pair. We generate multiple workloads
by mapping randomly selected rack-level traces to indi-
vidual racks in a rack set. Within a rack, requests are
randomly distributed across servers.

5.2.2 Base performance

We now compare our design to the static topology at dif-
ferent oversubscription ratios. We first describe the re-
sults for the Storage workloads shown in Figure 6. Fig-
ure 6(a) shows the tail FCT for both static and recon-
figurable topologies in function of the oversubscription
for one representative set of four racks. The tail FCT
is relatively high even for well-provisioned topologies,
showing that peak bandwidth demand can be high. As
expected, the tail FCT drops as the oversubscription de-
creases because both topologies get more network re-
sources. However, Larry has low tail FCT even when
oversubscription is high. For example, the tail FCT for
Larry with 3.2x oversubscription is about 64% lower
compared to a static topology with the same oversub-
scription. Despite the 3.2x oversubscription, it has about
42% lower tail FCT than the static topology with 2x over-
subscription and within 18% of a fully provisioned net-
work. At the highest oversubscription, Larry improves
tail FCT by a factor of 2.

This happens because Larry can reconfigure its topol-
ogy to efficiently allocate bandwidth to the traffic. Fig-
ure 6(b) shows the average rack throughput of Larry nor-
malized to the static topology in function of the over-
subscription ratio for the same workload. At the highest
oversubscription, the throughput per rack is 1.96 times
higher for Larry. As the oversubscription decreases, the
number of reconfigurable uplinks increases, which im-
proves performance compared to static topologies. How-
ever, eventually, the bandwidth per rack provisioned on
static topologies gets high enough to satisfy the demand,
and the reconfigurability makes less difference. Overall,
Larry has higher rack throughput for all oversubscrip-
tions and up to 2.7 times higher at 3.2x oversubscription.

Figure 6(c) examines the generality of our findings de-
picting 10th and 90th percentiles as error bars, 25th and
75th percentiles as the box and the median as the cross
in the box across all the workloads. The low variance
reveals that our observations are consistent across all the
simulations for the Storage workload.

We now focus on a representative Production work-
load. Figure 6(d) shows the tail FCT across different
oversubscription ratios. Like in the Storage workload,
we observe that reconfigurability improves tail FCT by
up to approximately a factor of 2. We attribute this be-
havior to reduced queuing of requests. Namely, due to
oversubscription, a delayed request can result in queuing
of subsequent requests, which delays the overall comple-
tion of the experiment. Figure 6(e) measures the duration
of the workload for Larry and static topologies normal-
ized to the actual duration in a non-blocking network.
Varying the oversubscription, we show that Larry man-
ages to complete the workload almost in time with up to
3.2x oversubscription while static topologies take much
longer to complete. Finally, Figure 6(f) shows the vari-
ance of our results across all the workloads, represented
as in Figure 6(c). We observe higher variance across
simulations because some workload instances have ex-
tremely low load. However, median values exhibit the
same trends as for the Storage workloads.

5.2.3 Performance per dollar

We now examine the performance per dollar of Larry. In-
tuitively, our design improves performance but requires
additional ports and cables at the rack level, and we aim
to determine whether its performance is worth the ex-
tra cost. We evaluate the deployment cost for the entire
data center network using a cost model from a large DC
provider that includes the volume costs of cables, mer-
chant silicon 5, and server NICs. Figures 7(a) and 7(b)
examine the tail FCT of two representative Storage and
Production workloads in function of the cost across static

5In the model, packet switch costs are per device and not per port.
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Figure 7: Performance as a function of cost.
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Figure 8: Reconfiguration overhead.

and reconfigurable topologies. Each data point refers to
different oversubscription, ranging from 1x to 5.3x in in-
creasing order from right to left (see the data labels). For
confidentiality reasons, we normalize the costs on the x-
axis to the cost of a fully provisioned topology. Based
on our estimations for the hardware costs, in this analy-
sis we assume a circuit switch to packet switch per port
cost ratio of 0.3. In both workloads, Larry has a better
performance per dollar than static topologies for over-
subscription ratios between 2x and 4x. For example, in
Figure 7(a) a static topology with 2x oversubscription
has a normalized cost of 0.68, which is approximately
the same cost as Larry with an oversubscription of 3.2x
that has 43% lower tail FCT. These oversubscription ra-
tios are common in current DCs, meaning that the per-
formance improvements described in Section 5.2.2 com-
pensates for the cost of adding reconfigurable hardware.

The cost of Larry depends on the cost of the circuit
switches. Figure 7(c) shows the total network cost of
Larry as a function of the circuit- to packet- switch per
port cost ratio, for 2.7x oversubscription, which is a sen-
sible design point in today’s DC topologies. We com-
pare it to the cost of a static topology with 1.1x oversub-
scription that has an equivalent 99th percentile FCT for a
representative Storage workload. We can see that if the
circuit switch port cost is below 1.22, Larry is cheaper
while offering the same performance. This means that
Larry remains cost-effective even if the circuit switch has
the same per port cost as a packet switch.

5.2.4 Properties of reconfiguration

We now focus on the Storage workloads and explore the
properties of the reconfiguration. Larry incurs overheads
in both control and data planes, so we first estimate the
reconfiguration frequency. Figure 8(a) shows the CDF of
the average reconfiguration frequency. The frequency is
only a few times per hour for all workloads. The high-
est rate is 9 reconfigurations per hour, for a median of 5.
This corresponds to one reconfiguration every 7 minutes
for the worst case observed. Furthermore, when recon-
figuration occurs, it only affects a small fraction of all
the circuits. Figure 8(b) shows the fraction of all cir-
cuits changed per reconfiguration. On average, about
22% of the circuits are modified, and 24% in the worst
case. This happens because of the conservative reconfig-
uration policy of the controller: reconfiguration happens
only when imbalance across racks is high.

We now evaluate the impact of the circuit downtime
on performance. The PHY negotiation delay is expected
to dominate over the circuit reconfiguration, hence we
conservatively vary the downtime between 1ms and 10s.
Figure 8(c) shows that downtimes up to one second have
low impact on the tail FCT because during peak demand
FCT is dominated by queuing at the 99th percentile.

We now vary the number of reconfigurable uplinks per
rack, focusing on 2x oversubscription. With this over-
subscription ratio, a rack has 8 uplinks, so the number
of reconfigurable uplinks is varied between 0 and 8, and
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Figure 9: Design flexibility.

having 0 reconfigurable uplinks is equivalent to the static
topology. Figure 9(a) shows the tail FCT for each setup,
normalized to the tail FCT of the static topology with 2x
oversubscription. Larry efficiently reduces tail FCT with
as little as 2 reconfigurable uplinks per rack. This is be-
cause when a rack is congested, the other 3 are typically
not. They can hence give away 6 uplinks to the congested
rack, nearly doubling its aggregate uplink bandwidth.

Finally, to evaluate the overhead of using multiple cir-
cuit switches, we rerun all the Storage workloads using
our uplink assignment algorithm on single large circuit
switch. The algorithm then has no constraints on how
the circuits are assigned and assigns uplinks only based
on the traffic. Figure 9(b) shows how the tail FCT us-
ing a single switch compares to our design for all work-
loads. We can see that both lines overlap, showing that
our greedy algorithm efficiently allocates uplink band-
width in function of the rack demand.

6 Related Work

Local reconfigurability was described in GRIN [18] and
Subways [40], showing that network resources are likely
to be available locally in the DC. Both systems offload
traffic at layers 2 or 3, with oveheads described in 2.2.

There has been extensive prior work on network re-
configurability using optical circuit switches [25, 39, 43,
50,54,55], free-space optics [27,30] and 60GHz wireless
radios [23,29,58]. As in our design, packets sent by ToRs
are forwarded over a fabric reconfigurable at the physical
layer. Flat-tree is a DC network design can also adapt to
different workloads by dynamically changing the topol-
ogy between Clos [19] and random graphs [49] via small
port-count packet or circuit switches [56]. However,
these systems require substantial changes to the data
plane or/and control plane of the entire DC network.
Larry is not aiming to provide direct links between any
ToRs in the DC, or change DC-wide network properties.
Instead, it targets local uplink congestion on the ToRs. It
hence does not require a DC-wide controller and can be
deployed incrementally and transparently to the DC.

Flexibility can be achieved without reconfiguring the
network topology. Hedera and Swan perform traffic en-
gineering at the control plane [20, 32] and dynamically
redirect traffic though least congested paths in the net-
work. Expander topologies, such as Jellyfish [49] and
Xpander [52] directly interconnect ToRs via static links
and dynamically change the routing protocol in function
of the load [35]. Expander topologies are not transpar-
ent, incremental deployments. They require re-cabling
and custom routing policies for the entire DC network
(or a large fraction of it). Larry is orthogonal to these
designs and can interface with them if they are deployed.

ReacToR is a hybrid ToR switch design which com-
bines circuit and packet switching [39]. A local clas-
sifier directs high-bandwidth flows to a set of uplinks
connected core network circuit switches, while the rest
traffic is directed to packet switches. ReacToR relies
on host-side buffering of bursts until the circuits be-
come available. Given the recent trend towards increas-
ing server density per rack, XFabric proposes a hybrid
design for rack-scale computers, where intra-rack traf-
fic is forwarded by packet switches embedded on the
servers’ SoC over a circuit-switched physical layer [37].
Larry can be incrementally deployed without involving
changes to any existing network components.

7 Conclusion

DC applications increasingly have high bandwidth de-
mand and tight latency requirements cross rack. Larry is
a network design that dynamically adapts the aggregate
uplink bandwidth on the ToRs as a function of the rack
demand. It ensures a low and predictable forwarding la-
tency overhead by reconfiguring the network at the phys-
ical layer instead of re-routing traffic at layers 2 and 3.
Larry can be deployed incrementally in existing DCs at
the scale of a few racks, and transparently co-exist with
the DC-wide controllers. It is hence well-suited for tar-
geted deployments that improve the performance of spe-
cific tiers or services in existing DCs. We have built
a prototype that uses a custom 40 Gbps electrical cir-
cuit switch and a small local controller. Using workload
traces, we show that Larry improves the performance per
dollar of the traditional oversubscribed networks by up
to 2.3x.
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