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ABSTRACT
AI clusters today are one of the major uses of High Band-
width Memory (HBM). However, HBM is suboptimal for
AI workloads for several reasons. Analysis shows HBM is
overprovisioned onwrite performance, but underprovisioned
on density and read bandwidth, and also has significant en-
ergy per bit overheads. It is also expensive, with lower yield
than DRAM due to manufacturing complexity. We propose
a new memory class: Managed-Retention Memory (MRM),
which is more optimized to store key data structures for AI
inference workloads. We believe that MRM may finally pro-
vide a path to viability for technologies that were originally
proposed to support Storage Class Memory (SCM). These
technologies traditionally offered long-term persistence (10+
years) but provided poor IO performance and/or endurance.
MRM makes different trade-offs, and by understanding the
workload IO patterns, MRM foregoes long-term data reten-
tion and write performance for better potential performance
on the metrics important for these workloads.
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1 INTRODUCTION
To date the world has been very binary when it comes to
storage: there are non-volatile and volatile storage technolo-
gies. DRAM in different forms (GDDR, HBM, LPDDR) is
the dominant volatile memory storage technology. Data it
stores is lost as soon as the energy source is removed. NAND
block-oriented and NOR byte-addressable Flash are the most
widely used examples of non-volatile memory storage. They
do not need to be constantly powered to persist data. At the
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memory cell level, data volatility is expressed as retention
time, which is the time that data is reliably stored without
requiring a refresh. Flash cells have a retention time of 10+
years, but this comes at the cost of lower read and write
throughput per memory cell than DRAM. These properties
mean that DRAM is used as memory for processors, and
Flash is used for secondary storage.

Several othermemory technologies, like RRAM,MRAM [30,
47] and PCM [24], all have the potential to offer non-volatility.
They fall into a class of memory that is often referred to as
Storage Class Memory (SCM) for servers. The recently dis-
continued Intel Optane / 3D XPoint [16] is an iconic represen-
tative of SCM, which aimed to overcome the IO limitations
of Flash while being non-volatile. The dream was to replace
DRAM by offering comparable IO performance and byte
addressability, while also featuring 10+ year retention. How-
ever, all attempts to date have failed to displace DRAM due
to the trade-offs. They failed to offer IO performance that
is comparable to DRAM at lower (or same) costs as Flash
due to the challenges of density and complex manufacturing
processes. For main memory, persistence of data is not as im-
portant as IO performance. For general compute workloads,
nobody wants to trade primary memory IO-performance for
10+ year data retention. These technologies also struggle
with endurance, which refers to the number of write cycles a
memory cell can support before it permanently degrades [24].
Hence, SCM ended up being valuable for some use cases (e.g.,
embedded compute [1, 2]), but not for deployment in servers.

Ironically, we believe that the rise of Flash may have been
something of a curse for memory innovation. Non-volatility
is a key storage device property, but at a memory cell level
it is quite misleading. For all technologies, memory cells
offer simply a retention time, which is a continuum from mi-
croseconds for DRAM to many years. The technologies that
underpin SCM have been forced to be non-volatile, requiring
their retention time to be a decade or more. Unfortunately,
achieving these high retention times requires trading off
other metrics such as write and read latency, energy effi-
ciency and endurance [13, 19, 34].

Perhaps one reason why this has been viewed historically
as binary, is that even with relaxed retention times, SCM
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technologies would not match DRAM on all metrics of impor-
tance for general workloads. However, foundation models (of
which Large Language Models, or LLMs are a subset) have
recently emerged as a new major workload with unique
memory IO requirements [38]. The tremendous scale and
growth of foundation model training and inference require
novel hardware approaches. Foundation model inference has
different memory IO requirements to historical workloads.
For example, a large fraction of the memory is used to store
model weights, for which IO performance is critical for se-
quential reads, but much less important for writes. Memory
IO is sequential and predictable, and given the energy chal-
lenges of AI clusters, energy per bit read is also an issue. The
only technology today that can match the IO performance,
energy and density is HBM. However, it is no panacea, and
certain key stages in foundation model inference are mem-
ory not compute bound. Further, HBM is expensive and has
significant yield challenges.
We think that there is an opportunity to rethink existing

"non-volatile” memory technologies for this new workload.
We propose a new class of memory that we call Managed-
Retention Memory (MRM). MRM is different from volatile
DRAM as it can retain data without power and does not
waste energy in frequent cell refreshes, but unlike SCM, is not
aimed at long-term retention times. As most of the inference
data does not need to be persisted, retention can be relaxed
to days or hours. In return, MRM has better endurance and
aims to outperform DRAM (and HBM) on the key metrics
such as read throughput, energy efficiency and capacity.
In the rest of this paper, Section 2 first characterizes the

foundationmodel workload characteristics and requirements.
It then discusses the challenges and lack of optimality of
HBM. Section 3 describes relevant emerging technologies. Fi-
nally Section 4 explores the broader systems implications of
rethinking memory and introducing MRM. We are explicitly
not settling on a specific technology, instead highlighting an
opportunity space. This is a call for action for those work-
ing on low-level memory cell technologies, through those
thinking of memory controllers, to those designing the soft-
ware systems that access the memory. Hail to a cross-layer
collaboration for better memory in the AI era!

2 MEMORY IN THE FOUNDATION
MODEL-ERA

Theworkload of a foundationmodel is quite different to tradi-
tional workloads. A foundation model is first trained, usually
on a large cluster (e.g., 50,000+ AI accelerators), and the
output is essentially a set of model weights. These weights
are then deployed in production where they serve inference
queries. Thousands or even millions of instances of the foun-
dation models will be used but the scale of hardware per

inference is much smaller (e.g., 4+ AI accelerators). It has
been observed that both training and inference workloads
are memory intensive [3, 57]. Training scale depends on the
model size and is a one-off effort (often taking months), while
the inference workload is demand-driven and served for a
significant time period until the model weights are retired.
Training and inference have distinct memory access pat-

terns and requirements, and are typically deployed on dif-
ferent clusters. As demand increases, we are expecting the
inference infrastructure to dominate, and are hence focusing
on the inference workload. More specifically, we consider
foundation models that perform autoregressive token gener-
ation, i.e., new tokens are generated based on the sequence of
preceding tokens. An inference query is a sequence of input
tokens, in response to which the foundation model generates
a sequence of output tokens. A context is composed of all the
tokens from the user and the corresponding responses gen-
erated by the model during the interaction. Having contexts
as large as possible is desirable, as it improves the model’s
reasonning ability via its use of the self-attention mecha-
nism [52]. However, in deployment, contexts have limited
size and range from low 1000s to a few 10,000s tokens (de-
pending on the model), and are primarily limited by the
amount of memory available. Each inference query is com-
putationally expensive and requires distributed computation
across multiple AI accelerators.

Inference relies on three main in-memory data structures:
model weights, the KV cache, and model activations. Of these,
model weights and the KV cache use up the majority of the
memory capacity [22].
The model weights (a matrix) have been key to expand-

ing the capabilities of frontier foundation models; there has
been an exponential growth in the size of the model weights
with each generation of foundation model. Currently, large
models have (well) over 500 billion weights, representing be-
tween 250 GB and over 1 TB of data depending on the weight
quantization used. The weights are effectively a non-mutable
data structure. The reference model weights are persisted in
storage, while a replica is distributed across the AI accelera-
tors in every inference cluster. There are a large number of
foundation models today, but in practice a small number of
the most popular ones are used at scale. All inference queries
made to a given foundation model version (e.g., GPT4) use a
copy of the same weights.

The KV cache supports the model’s self-attention mecha-
nism. It is a sequence of self-attention vectors that encode
the model’s understanding of the relationship between all
the tokens in a context. Every time a new token is generated
in a context, a vector is appended to the end of the corre-
sponding KV cache. Each vector is typically a few MBs, so
the KV cache usually grows to a few tens of GBs until the
context size limit is reached.
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Lastly, model activations are the transient tensors that
are created and passed between the different layers during a
forward pass of the network. They are typically an order of
magnitude smaller than both the weights and the KV cache,
and are only stored during the forward pass computation.

The KV cache is created during the prefill phase, when the
first set of tokens is received from a user. Subsequently, in
the decode phase the model iteratively generates response
tokens. For that, at each iteration the KV cache is read en-
tirely and sequentially, a new token is generated, and the
corresponding self-attention vector is appended to the KV
cache. KV caches leverage memory to reduce computation
and are soft state: they are generated by the model, and can
be re-computed if needed. However, the token rate per sec-
ond is usually quite low (thus expensive) so caching and
using the KV cache is usually preferable to recalculation.

During inference, the entire self-attention data andweights
are read for every generated token, creating substantial band-
width demand between memory and compute. At any given
time, many inference requests are multiplexed over the same
cluster, but all of them are for the same model. Each AI accel-
erator’s memory thus contains a subset of the model weights,
as well as several KV caches and activations that correspond
to the working set of contexts. When a new model is de-
ployed, the cluster stops accepting new requests, services
ongoing ones, then loads weights for the new model.

To summarize, foundation model inference is mostly com-
posed of very large, predictable memory reads, while writes
are smaller and mostly append only. Exact memory ranges
to be read are known in advance, and large fractions of the
memory are not overwritten for long periods of time. Yet,
despite being read-dominated, inference still requires write
rates that are very high compared to storage workloads.

2.1 The Curse of HBM
Today the majority of data used in an AI accelerator is stored
on HBM, because all the data structures need to be repeatedly
read at high bandwidth. Current AI accelerators can support
very high main memory bandwidths, e.g., 8 TB/s for a single
B200 GPU [51]. In addition, since weights and KV caches are
large, AI accelerators require substantial HBM capacity. Hard
engineering challenges need to be surmounted to achieve
this, especially around energy usage. Signal loss over copper
interconnect tracking at the required data rates means that
the memory must be physically located (very) close to the
compute die, typically co-packaged on the same interposer.
The very wide interfaces, and high signal rates translate
into more energy, and approximately a third of the energy
usage for an AI accelerator is the memory. HBM is used as it
enables 3D-stacking of DRAM on the same package to boost
on-package memory capacity, throughput, and minimize the

distance of the memory cells from the AI accelerator. Current
HBM products have 8-12 layers, for an aggregate 192 GB
on a B200 package [51]. Hence, HBM is used as it offers the
highest throughput at the highest density with reasonable
energy usage. However, even using HBM, a substantial part
of every inference query is memory bound [37].
Unfortunately, there is currently no viable alternative

to HBM. Non-stacked DRAM does not have the required
density, while NAND and NOR Flash memory are not fast
enough and have low lifetime endurance especially at higher
densities where multiple bits are stored per memory cell.
Both lack the energy efficiency required in package.
It should be noted that HBM comes with several funda-

mental challenges. First, memory vendors are struggling to
continue to scale the density. The per-layer scaling is strug-
gling with challenges inherited from DRAM [40]. So, the
next generation of HBM (HBM4) is only expected to increase
capacity per layer by 30% compared to current HBM3e. Sec-
ondly, the 3D-stacking of DRAM both significantly reduces
the yield of the manufacturing process and also leads to
heat dissipation challenges, especially when tightly pack-
aged with an AI accelerator die. Currently, the industry does
not expect it to scale beyond 16 layers in the foreseeable
future [50] as 3D-stacking is extremely complex. Finally, the
power density of the infrastructure is very high and contin-
ues to grow, increasing the need for every Watt to be spent
on useful work. Due to cell-level capacitor leakage, HBM
fundamentally requires frequent refreshing (∼ every tens to
hundreds of miliseconds), consuming power even when the
memory is idle.
These factors, combined with high demand, fueled by

exponential growth of cloud infrastructure for foundation
models, means that HBM accounts for a substantial fraction
of an AI cluster’s cost. This is unlikely to change in the
foreseeable future, and AI clusters will remain dependent on
HBM.

2.2 A New Hope?
Foundationmodel inference is very different from the general-
purpose main memory workload for which DRAM was de-
signed. First, it is extremely read-intensive. For example,
each token generated during decode requires reading all the
weights, and the entire KV cache [37], for one self-attention
vector write. Self-attention vector size is usually at most a
few MBs [4, 44], while weights and KV caches are typically
10s of GBs, which imply read:write ratios of over 1000:1.

There are efforts to reduce the amount of data read dur-
ing inference. For example, batching allows weight reuse
across requests [3]. However, batching is limited by latency
requirements [3]. Reuse of the KV cache across requests [54]
and KV cache compression [27] are also used, but each has
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its limitations and even together they do not fundamentally
change the heavily read-dominated nature of the workload.

Second, memory accesses are sequential andpredictable.
There are no in-place updates for weights or KV caches,
and the same weights and KV cache are read iteratively for
every foundation model response. Memory virtualization
mechanisms have been proposed to address memory frag-
mentation [22], but even in that case, pages are read in the
same order. Each page is typically over 10 vectors (typically
several MBs to 10s of MBs) and is read sequentially [22]. Fur-
thermore, the mapping between virtual pages and physical
addresses is typically static.
These properties suggest that most of the HBM capacity

is used for data that has little use for the general-purpose
properties HBM inherits from DRAM (random access, byte-
addressability, comparable read andwrite performance). HBM
is, in a sense, overprovisioned for the requirements of this
foundation model inference workload. This overprovisioning
leads to suboptimal cost and energy overheads.

It also raises the tantalizing question: if we correctly pro-
vision the memory to the workload, can we address this
suboptimal cost and energy challenges for memory in infer-
ence clusters?

3 THE MEMORY OPPORTUNITY
We posit that the combination of (i) the importance and scale
of foundation model infrastructure, (ii) the large difference
between the workload patterns of conventional server CPUs
and that of AI accelerators, and (iii) the poormatch of HBM to
the workload, opens a field of computer architecture research
in better memory for this application.
We now motivate that this opportunity is best addressed

by a new type of memory, as opposed to DRAM, HBM or
Flash. Flash cannot be used because it does not have enough
endurance, even with Single Level Cells (SLC) [7], and cannot
satisfy the high throughput and energy efficiency require-
ments [14, 36]. The non-volatility of Flash is also unneces-
sary: the data is either persisted elsewhere (weights) or is
soft state (KV caches, activations).

On the other hand, some workload properties are close to
ones typically exhibited by storage workloads. For example,
byte addressability is not required, because IO is large and
sequential. Similar to storage infrastructure, storage capacity
and total cost of ownership (TCO)/TB are key metrics, on
which HBM is underperforming. Combining HBM and lower-
cost, lower-throughput LPDDR for cooler data would reduce
the overall hardware cost but also reduce the bandwidth at
which the data is available to the GPU, and fundamentally
not improve the HBM’s read energy efficiency.

Figure 1: Endurance requirements for KV cache and
model weights vs. endurance of memory technologies.

Finally, as power efficiency is perhaps the most important
metric, housekeeping operations internal to the memory de-
vice need to be minimized. Many housekeeping overheads
in existing technologies result from a mismatch between
cell retention and data lifetime. DRAM’s retention is too
short, requiring frequent refreshes. Flash retention is too
long, which is achieved at the expense of endurance, requir-
ing FTL mechanisms (wear levelling, garbage collection). In
both cases, housekeeping leverages the write path, and is
typically energy-intensive. In contrast, matching retention
to the lifetime of the data makes refresh, deletion, or wear-
leveling unnecessary. In effect, instead of a data persistence
management mechanism, retention becomes a cornerstone
of device power management.
Can MRM match AI cluster requirements? PCM, RRAM,

and STT-MRAM have read performance and energy on par
or better than DRAM or even SRAM [28]. They also have
potential for higher density and/or lower TCO/TB [17]. STT-
MRAM and RRAM cells have already demonstrated potential
for multi-level encoding [10], high endurance [25], and can
be organized into high-density, transistor-less crossbar lay-
outs [56]. They are also typically easier to stack on the same
die, because resistive cells do not use tall capacitors [40].
Reducing retention allows lower voltage writes, unlocking
advanced scaling processes, at 7 nm or beyond [58]. These
technologies thus demonstrate a plausible roadmap towards
lower read energy, higher read throughput and capacity than
DRAM. Further, they are already deployed in real products.
PCM was shipped at scale in Intel Optane devices, while
RRAM and STT-MRAM have matured over the past few
years, and are used for automotive, wearable and IoT appli-
cations [1, 2, 6].
These technologies have lower endurance than DRAM,

and we now estimate the approximate endurance require-
ments for weight and KV cache writes. Weight updates are
infrequent, bulk overwrites when the model is replaced. The
update frequency is currently typically low (hours+), but
could evolve as models diversify. We estimate the endurance
required over 5 years for a conservative hourly update and
an intensive once per second update. KV cache writes occur
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both during prefill and decode, one self-attention vector per
context token. Prefill is typically higher throughput than
decode, and we use the throughputs and median context
lengths reported for the Llama2-70B model in Splitwise [37].
For an expected lifetime of five years, we compute the num-
ber of KV cache writes, and infer the average number of
writes per cell.

Figure 1 shows a comparison between endurance of ex-
isting memory/storage technologies and the workload en-
durance requirements. When applicable, we differentiate
endurance observed in existing products from the poten-
tial demonstrated by the technology. We use technology
endurance from [30, 47], while product endurance is taken
from device specifications and benchmarks (Intel Optane
PCM [5], Weebit RRAM [32] and Everspin STT-MRAM [39]).
We observe that 1) HBM is vastly overprovisioned on en-
durance, and 2) existing SCM devices do not meet the en-
durance requirements but the underlying technologies have
the potential to do so. We believe this is partly due to current
devices being designed for non-volatility, which is achieved
by trading off other important metrics such as write latency,
energy efficiency or endurance [19, 34]. We see this as an
opportunity to rethink existing memory technologies, cur-
rently used for SCM, specifically for AI workloads, by trading
off non-volatility for other key metrics.

4 SOFTWARE STACK IMPLICATIONS
In this section, we motivate why MRM is of interest to the
computer systems community. Foundation models are be-
coming pervasive which leads to a diversification of the
requirements: some use cases have tight latency SLAs (e.g.,
user-in-the-loop conversation), some are throughput hungry
and heavily use batching, others are background best-effort
jobs (e.g., meeting recap). The workload is becoming more
complex, with vastly different input:output token ratios, ex-
pert models tailored for specific use cases, and dependen-
cies on advanced augmentation mechanisms (e.g. RAG [59]).
In addition to that, the resource-heavy nature of the work-
load and the cost of the hardware require hollistic and ef-
ficient orchestration. This is addressed by leveraging key
OS mechanisms (e.g., virtual memory [22], power-aware
scheduling [46] or speculative execution [31]), effectively
building up towards a rack-scale OS for foundation model
inference. In that context, the emergence of MRM brings a
set of exciting challenges and opportunities to explore.
Retention-aware data placement and scheduling.MRM is
unlikely to be a one-size-fits-all solution, and will co-exist
with other types of memory, such as HBM for write-heavy
data structures (e.g., activations), and LPDDR as a slower tier.
Fine-grained understanding of lifetime and access patterns

of the data will be required to lay out the data. The sched-
uler will need to track the data expiration times, and decide
whether to refresh it or move it to another tier based on the
state of the requests that depend on that data.
Lightweight memory controllers. There is potential to
make the MRM controller extremely simple and energy effi-
cient. The lack of random access requirements opens up a
unique prospect of a block-level access memory controller,
with implications on the software stack. Much of the func-
tionality that is typically handled on the device, such as
refresh and wear-levelling can be left up to a software con-
trol plane higher up in the stack, which is best-placed to
make these decisions while satisfying global application re-
quirements. This approach is akin to zoned storage interfaces
for Flash [60].
Dynamically Configurable Memory (DCM). Since the
control plane has cluster-level visibility over both applica-
tions and user workloads, it is also best-placed to dynamically
decide the retention period needed for each data when it is
written, effectively right provisioning the MRM to the work-
load. This is a fully-flexible instantiation of MRM. At the
hardware level, the memory controller would support writ-
ing at different durations and energies, allowing retention
time to be programmed at runtime. The foundation model OS
could then orchestrate optimal data refresh, wear-leveling,
and garbage collection at the cluster level.
Retention-aware error correction. MRM’s relaxed reten-
tion requirements also raise an interesting question: how do
we think about data integrity? Much of the data stored in
MRM will either be durably stored elsewhere (e.g., weights),
or be soft state (e.g., KV cache). As such, the requirements
for persistence are not as stringent as for traditional stor-
age systems. Nonetheless, the system still needs to enforce
integrity in order to guarantee correctness of computation
involving the data, and avoid frequent re-computation of
soft state. Leveraging existing state-of-the-art error correc-
tion techniques for memory[55] is a good start, however a
large block-based MRM interface means that there is scope
for considering error correction techniques that operate on
larger code words and have less overhead [8]. Designing
efficient error correction for MRM that meets the strigent
latency and throughput requirements will be a fruitful area
for open research.

5 RELATEDWORK
The trade-offs between retention, endurance and write en-
ergy efficiency have beenwell studied both for STT-MRAM [18,
43, 48] and RRAM [15, 23, 34, 41]. Leveraging this mecha-
nism has been proposed to improve the energy efficiency of
hybrid on-die CPU caches [18, 41, 43, 48]. In contrast to our
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work, this strand of work focuses on general-purpose multi-
core CPUs, and is hence addressing a different optimization
problem. AI clusters have rack-scale energy and cooling re-
quirements, and have a more complex set of memory tiers
and interconnects, but more predictable workloads.
Stanford has recently started a 5-year project to address

the anticipated upcoming increase in tiering and heterogene-
ity of main memory [45]. We share the same observation
that the memory wall [40] is a major challenge for key work-
loads, and is likely to lead tomorememory heterogeneity due
to lack of one-size-fits-all technology. While novel in data
centers, this trend is common place in other applications.
For example, the embedded world historically used ROM
(Read Only Memory) [9, 33] which was a write once read
many technology, EPROM (Erasable Programmable Read
Only Memory) [29] write few read many which was used to
store programs and could be erased using UV light, and of
course RAM. ROM and EPROM offered non-volatile storage,
and careful design choices had to be made to best leverage
the upsides of the different technologies.
There is ongoing effort to overcome the memory wall

by tighly integrating memory and compute. This is done by
either adding more memory onto the compute die [26, 42], or
with in-memory computing (IMC) [53]. Similar to our work,
IMC is often aimed at AI workloads with either analog [11]
or digital [20, 21] computation, and can be MRAM [12] or
RRAM [12] based. Our work is orthogonal, because it aims to
optimize the mainstream memory/compute model, instead
of exploring a new paradigm.

Finally, there is substantial work on leveraging the hetero-
geneous memory access patterns in AI clusters. For example,
it has been proposed to use CPUmain memory for offloading
idle KV caches [49? ]. The latest Nvidia’s GB200 superchip
has an integrated LPDDR5 controller for a higher capac-
ity, slower memory tier [35]. This suggests that memory
heterogeneity is going to be common place in AI clusters.
Our work proposes to leverage more aspects of data access
heterogeneity to maximize tokens generated per dollar.

6 CONCLUSION
The emergence of AI workloads and their dependence on
HBM memory has highlighted the limitations of HBM. AI
inference workloads demand high read throughput, density,
and energy efficiency, which HBM struggles to provide cost-
effectively. We propose a new class of memory that can
co-exist with HBM, Managed-Retention Memory (MRM),
which enables the use of memory technologies originally
proposed for SCM, but trades retention and other metrics
like write throughput for improved performance metrics
crucial for these AI workloads. By relaxing retention time
requirements, MRM can potentially enable existing proposed

SCM technologies to offer better read throughput, energy
efficiency, and density. We hope this paper really opens new
thinking about innovation in memory cell technologies and
memory chip design, tailored specifically to the needs of AI
inference clusters.
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