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Abstract. Linda is a co-ordination language that has been used for

many years. From our recent work on the model we have found a simple

operation that is widely used in many di�erent algorithms which the

Linda model is unable to express in a viable fashion. We examine a

function which performs the composition of two binary relations. By ex-

amining how to implement this in parallel using Linda we demonstrate

that the current methods are unacceptable. A more detailed explanation

of the problem, which we call the multiple rd problem is then presen-

ted, together with some other algorithms which have the same prob-

lem. We then show how the addition of a primitive to the Linda model,

copy-collect, extends the expressibility of the model to overcome this

problem. This work builds on previous work on the addition of another

primitive called collect[1]. The parallel composition of two binary rela-

tions is then reconsidered using copy-collect and is shown to be more

e�cient.

1 Introduction

Linda is an asynchronous model of concurrency, which allows parallel programs

to be developed which are highly decoupled; in other words each process knows

little or nothing about the other processes during computation.

Whilst working on the implementation of parallel image processing algorithms

in Linda[2] it became clear that the Linda model was unable to support a cer-

tain operation, which we will refer to as the multiple rd problem. The operation

however is one whose existence is often needed in parallel algorithms, where

information is stored in tuple spaces for many processes to non-destructively

access in parallel.

In order to demonstrate the problem we focus on the implementation of

several algorithms to perform the composition of two binary relations. However,

before considering the example, a brief overview of Linda is presented.

2 The Linda Model

The Linda model is described in detail in many papers[3]. The Linda Model

is intended to be an abstraction, and as such is independent of any speci�c

machine architecture. This has meant that alternatives and extensions to the
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basic Linda model have been proposed and investigated. The extensions that

are used currently in the York Linda kernel[4] are:

multiple tuple spaces The addition of multiple tuple spaces has been dis-

cussed for some time. Schemes based on hierarchies of tuple spaces have

been suggested[5, 6], which involve the concept of active and frozen tuple

spaces. The addition of multiple tuple spaces is achieved by incorporating a

tuple space type and a primitive to create a new tuple space. For instance

in ISETL-Linda[7], a type bag represents a tuple space, and the primitive

NewBag creates values of type bag.

collect primitive A new tuple-space primitive, collect[1]. This primitive by

its very nature requires multiple tuple spaces. Given two tuple space handles

(ts1 and ts2) and a tuple template, then collect(ts1, ts2, template)

moves tuples that match template in ts1 to ts2, returning a count of the

number of tuples transferred.

3 Parallel Composition of Two Binary Relations

3.1 Introduction

In order to demonstrate the multiple rd problem, we will consider the imple-

mentation of an algorithm for the parallel composition of two binary relations.

We will use a strategy that appears natural to the problem, and then consider

how to implement it to overcome the multiple rd problem.

A binary relation is de�ned to be a set of ordered pairs. Given two binary

relations, S and R, their composition, R � S, is de�ned to be:

f(a; b) j (a; x) 2 R and (x; b) 2 Sg

We assume that the elements of each set are held in separate tuple spaces,

with each tuple representing an ordered pair. After performing the composi-

tion, a new tuple space will be created containing the resulting tuples. This is

demonstrated in Figure 1.

[1,7]

[2,7]
[2,9] [1,9]

[5,12]

Tuple space R Tuple space S Tuple space R   S

[2,3]

[5,6]

[4,7]

[3,7]

[1,3] [3,7]

[3,9]

[6,12]
[9,10]

[5,8]

Fig. 1. Composition performed between two tuple spaces



3.2 Implementations

It is clear that an algorithm to do this can be implemented in parallel { every

tuple in tuple space R is compared with every tuple in S in parallel. If the second

item in a tuple from R matches the �rst item of a tuple in S, then a result tuple is

placed in the result tuple space. At �rst sight it would appear that this problem

is particularly well suited to Linda because of the matching element.

The most obvious solution is to have one worker for each element in the set

R. Each of these workers will take a tuple from tuple space R. They will then

attempt to �nd all tuples in tuple space S where the �rst element of the tuple is

the same as the last element of the chosen tuple from tuple space R. It should be

noted that any tuple in S may be needed by more than one worker process and

any one process may need more than one tuple from S. Initially, the obvious idea

is to use a rd. However, because more than one tuple from S may be required

by a single process, repeated uses of the rd primitive might always return the

same tuple. Therefore, how do the di�erent workers access all the distinct tuples

in tuple space S?

There are two basic approachs to the problem. We will outline each approach,

and show the weaknesses that are inherent within them. In each case we present

the ISETL-Linda[7] code for each worker.

Using tuples as semaphores The �rst solution to the problem is to use a

tuple that acts as a semaphore (a lock tuple) on the tuple space S. Each

worker takes a tuple from R, then attempts to grab the lock tuple in S.

There is only one such tuple in the tuple space S, and therefore it acts like a

binary semaphore. Once a worker has the tuple, it has unrestricted access to

the tuple space S. The worker creates a template using the second element of

the tuple read from R as the �rst element of the template. This template is

then used by a collect to move all
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the tuples that match the template in

S to a local tuple space. Therefore, only tuples that are going to be used are

moved from S. The worker then ins each tuple from the local tuple space and

replaces the tuple back into S, and also outputs the composition result into a

tuple space C. Finally, once all the tuples in the local tuple space have been

processed and replaced into the tuple space S, the lock tuple is replaced in

S. This means that S contains all the tuples it did when the worker started.

It should be noted that the tuple which acts as the semaphore can only be

replaced in the tuple space when the tuple space is in its original state. If

the tuple is returned before this is true then the other processes can not

guarantee duplicating all the tuples that they should. The ISETL-Linda code

for a worker is shown in Figure 2.

It should be noted that although the collect primitive is used in this solu-

tion it is possible to create an implementation that is similar, but just uses

the standard Linda primitives if the implementation supports a predicated
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comp_worker := func(R,S,C);

local my_val, my_ts, my_comb, dummy;

my_ts := NewBag;

my_val := lin(R,|[?int,?int]|);

dummy := lin(S,|["lock"]|);

todo := lcollect(S,my_ts,|[my_val(2),?int]|);

while (todo > 0) do

todo := todo - 1;

my_comb := lin(my_ts,|[my_val(2),?int]|);

lout(C,[my_val(1),my_comb(2)]);

lout(S,my_comb);

end while;

lout(S,["lock"]);

return ["TERMINATED"];

end func;

Fig. 2. Worker using binary semaphore or lock tuple

version of in. If the implementation does not support the predicated in
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then only the second approach (detailed below) can be used.

This solution is unacceptable because it creates a sequential bottleneck. If

more than one process wishes to perform the operation at the same time

then it produces a bottleneck, as �rst one process gets the semaphore and

then the next. In the worst case, as is the situation here, the whole program

degenerates into a sequential program. All the workers wish to access the

tuple space at the same time but only one at a time can.

Streams The second approach is to use what is called a stream. This involves

the addition of a new unique �eld to each tuple. This unique �eld then

makes each tuple in the tuple space di�erent. As long as the workers know

how the unique �eld is generated (for example using a counter) each worker

can access each tuple using a rd, and the accesses can occur concurrently.

This is because all tuples are now distinct, and hence the rd primitive will

never match multiple tuples as the unique �eld is speci�ed in the template.

The ISETL-Linda code for a worker is shown in Figure 3.

With this solution all the workers can perform the searching of the second

tuple space in parallel. However, there are two problems with this approach

that makes it unacceptable:
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comp_worker := func(R,S,C,NumTupS);

local my_val, my_comb;

my_val := lin(R,|[?int,?int]|);

while (NumTupS > 0) do

my_comb := lrd(S,|[NumTupS,?int,?int]|);

NumTupS := NumTupS - 1;

if (my_comb(2) = my_val(2)) then

lout(C,[my_val(1),my_comb(3)]);

end if;

end while;

return ["TERMINATED"];

end func;

Fig. 3. Worker using streams

{ Every tuple in the tuple space requires a unique �eld to be added, and

all the processes using the tuples must be aware of the unique �eld and

how it is generated. This removes the natural use of a tuple space as

the data structure, by adding another structure (a stream) to the tuples

within it. In order to achieve this either the producer must be aware of

the need to add this unique �eld, in which case the cost of adding the

�eld is minimal, or the tuples have to be preprocessed before use, which

incurs additional and unwanted time costs.

{ It also largely negates the advantages of the tuple matching abilities

of Linda. Every tuple in the stream structure must be read. If there

are several thousands of tuples in a tuple space and only one percent

actually match, then the cost of reading every tuple is enormous. If

the implementation does not support a predicated version of rd then

additional checking of the returned tuple will be required to see if the

�elds match. Even if the majority of tuples match, any tuple that does

not match introduces unnecessary and unwanted time costs.

Table 1 presents the execution times on our system[4] of a sequential version

of the problem (using tuple spaces), a version using a binary semaphore and a

version using streams. In each case the cardinality of R was �ve, the cardinality

of S was 50 and the number of elements that each element of R should have

matched with in S was four, producing a set C with cardinality of 20. It should

be noted that the time to alter the data structures and spawn the workers is not

included in the execution times.

As can be seen none of the parallel versions represent a noticeable speed up

of the sequential version. We call the problem observed here the multiple rd



Version Execution time in ticks

(arbitrary units)

Stream version 11670

Sequential version 7885

Semaphore/Lock version 7143

Table 1. Experimental results

problem.

3.3 Generalisation of the problem

The multiple rd problem is not something that is exclusive to the parallel com-

position of two binary relations. We now present a fuller description of the mul-

tiple rd problem, and indicate some other areas where the problem can be ob-

served.

This problem arises when multiple processes wish to non-destructively read a

subset of the tuples in a tuple space. The repeated use of a rd in this situation is

incorrect as it may result in the same tuple being read more than once. Within

the "standard" Linda model the only solution to this problem is to use some sort

of a binary semaphore or to use a stream, or some hybrid of the two methods.

With the semaphore approach if a process wishes to read a subset of the tuples

in the tuple space the process moves all the required tuples to a temporary tuple

space, and then destructively reads them using an in and returns them to the

original tuple space. If more than one process wishes to \read" a subset of the

tuples in a tuple space then those tuples have to be \locked" whilst the copying

is taking place because if any other processes were to try to copy the same tuples

at the same time then both processes may fail to get a complete copy of all the

possible tuples. The alternative, using a stream structure, requires the addition

of a unique �eld to all the tuples and the reading of all tuples in a tuple space

in order to detect all potential matches.

What makes this multiple rd problem more frustrating is that it would seem

possible that several non-destructive reads of a tuple should be possible in par-

allel. Within the Linda model there is no notion of synchronisation between

primitives, and hence two Linda primitives can be executed concurrently, and

indeed the York Linda kernel[4] supports concurrent primitive operations.

We now consider other areas and algorithms where the multiple rd problem

can be observed. Work on the parallel implementation of many di�erent image

processing algorithms in Linda has shown this to be a common problem. If,

for example, a binary image is stored in a tuple space many image processing

operations require to access only the pixels which have a value of one (or are

\on"). Many low and intermediate level image processing operations use a repet-

itive process applied to every pixel, indicating that there will be many workers,

sharing the image (for example the Hough transform). How can these multiple



workers access the pixels with a value of one, without either checking every pixel
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or locking the image? This is another example of the multiple rd problem.

Another example is in the use of persistent tuple spaces to store information.

It has for a long time been suggested by some that persistent tuple spaces are

a natural way to store information. Let us consider an example where a tuple

space is being used to store information, perhaps tuples that contain names

and addresses. What happens if several people concurrently wish to access the

information? In the database world this would represent no problem: I wish to

retrieve the addresses of all people whose name is \Smith". In a large database

there are likely to be more than one tuple (record) which contains this name.

The entire tuple space (database) would have to be locked or traversed in order

to allow the retrieval of these tuples (records). This is clearly unacceptable.

4 The copy-collect primitive

In order to overcome the multiple rd problem we are investigating the use of an

additional Linda primitive; copy-collect. It is similar to collect[1]:

copy-collect (ts1, ts2, template) This primitive copies tuples that match

template from one speci�ed tuple space (ts1) to another speci�ed tuple

space (ts2). It returns the number of tuples copied. This di�ers from a

collect in that a collect moves the tuples, and therefore is a destruct-

ive operation on the source tuple space, where as copy-collect copies the

tuples from the source tuple space, and is therefore non-destructive. If the

source tuple space (ts1) is inactive (in other words no other processes are

performing operations which modify its contents) then all the tuples which

match the template will be copied from the source tuple space (t1). If a

modifying operation is performed on the source tuple space at the same

time then the outcome is nondeterministic, as it would be if an in and a rd,

for example, where performed on the same tuple at the same time.

Linda is an asynchronous system, and therefore at the model level many

operations can occur in parallel. Therefore, if two process happen to do a rd

at the same time on the same tuple there is no reason why they could not be

serviced concurrently. The copy-collect primitive is the same, many di�erent

processes can concurrently do a copy-collect and all these can be serviced

concurrently. Therefore, many processes can independently and asynchronously

produce a copy of a number of tuples in the same tuple space.

It might appear as though the primitive moves the bottleneck of using an

explicit semaphore to lock a tuple space into the implementation - it appears

to perform the same operations as indicated in the code fragment presented in

Figure 2, except in the kernel. This of course can be the case. However, in our

implementation the tuple space is distributed over many di�erent processors
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which can perform the operation in parallel. Therefore, the implementation is

in e�ect locking several small sections of the tuple space and performing the

operation in parallel. Hence, the e�ects of the bottleneck have been reduced.

The cost of performing a copy-collect is similar to the cost of performing an

in that blocks[4]. The primitive has been added to the York Linda kernel[4, 8].

5 Implementation - revisited

We can now reconsider the multiple rd problem, by examining how copy-collect

would be used for the parallel composition of two binary relations. The new

worker is shown in Figure 4. As with the �rst implementations each worker

takes a tuple from tuple space R, and then uses the new primitive to copy all

the tuples which it will require from tuple space S to a local tuple space. This

is done by creating a template that will match all the tuples that are required

and then performing a copy-collect. The copied tuples are then destructively

read from the local tuple space, without a�ecting the source tuple space.

comp_worker := func(R,S,C);

local my_val, my_ts, todo, my_comb;

my_ts := NewBag;

my_val := lin(R,|[?int,?int]|);

todo := lcopycollect(S,my_ts,|[my_val(2),?int]|);

while (todo > 0) do

todo := todo - 1;

my_comb := lin(my_ts,|[my_val(2),?int]|);

lout(C,[my_val(1),my_comb(2)]);

end while;

return ["TERMINATED"];

end func;

Fig. 4. Code segment showing the worker using copy collect.

Table 2 shows the execution times for the copy-collect, stream and sema-

phore version using the same data sets as for the �rst results presented in Table 1.

As can be clearly seen the execution time for the copy-collect is signi�cantly

smaller than the other versions, and represents a speed up over the sequential

version.

Table 2 also contains an additional result for a coarser approach. It had been

suggested by an expert Linda programmer that the general approach that we

were considering was a poor one, as it was too �ne grained and consequently we



should use a more coarse grained approach, where the contents of the set S are

coded as a single tuple. All the workers start up, read a tuple from tuple space

R as before but then read the single tuple in S, using some sort of local data

structure to store the returned tuple and for the calculation of the matching

elements. One of the underlying principles of our work is the abstraction away

from large data structures with single processes and the use of a tuple space

as a (distributed) data structure in its own right. Hence, although we could

understand this view, we felt that it compromised this principle. However, we

examined this approach and the execution time for the coarser version is shown in

Table 2. As can be seen the execution time is comparable to the semaphore/lock

version (and sequential) but the copy-collect version is still considerably faster.

Version Execution time in ticks

Stream version 11670

Coarser approach 7244

Semaphore/Lock version 7143

copy-collect 4579

Table 2. Experimental results II

This has shown how the new primitive would be used, and it can be seen how

it would work for all cases where a multiple rd is required, and therefore solves

the multiple rd problem. In general, a worker creates a \local" copy of the tuples

that it requires using a copy collect and then destructively reads them from

that local tuple space. For example, given a tuple space containing an image

with each pixel a separate tuple ([x coord, y coord, value]) the command:

copy collect(image ts, local ts, |[?int, ?int, 1]) would copy all the

tuples with a value of one into the local tuple space.

6 Alternative proposals

As with any abstract model there have been many proposals to alter the model.

One that is particularly of relevance here is the proposal for another primitive;

rd()all[9]

5

. The informal semantics of rd()all are:

rd (template)all(function) This primitive will apply the function to all tuples

in a tuple space that match the template.

Anderson[9] notes that there are speci�c problems with such a primitive.

The suggestion is that the operation is not atomic, so essentially a cycle is

created where a tuple is fetched, the function applied to it, and then the next
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tuple fetched. He states that this is due to the implementational di�culties

of creating an atomic primitive. However, such a primitive raises much deeper

questions whether it is perceived as atomic or non-atomic. What happens if the

function removes tuples from the tuple space that the rd()all would match?

What if the function adds tuples to the tuple space? Is there any reason why

the function should not be executed in parallel? It would also imply that the

primitive has the "interesting" ability to livelock, especially if it is not atomic.

It is also unclear what information the primitive actually returns. However, it

should also be noted that rd()all does not require multiple tuples spaces, and

could be incorporated into systems with or without them.

There are however, a number of interesting things that this primitive does

provide, such as the ability to unify across multiple templates. However, again

the exact semantics are not speci�ed, and this could be di�cult to implement.

The copy-collect primitive is much simpler. It does not attempt to fold

communication and computation into the same primitive. It also returns in-

formation which is very valuable to the programmer. The information allows the

number of workers evaled to be controlled for example. If there are many tuples

that match, more workers will be required than if fewer tuples match.

7 Conclusion

We have demonstrated the multiple rd problem, and have shown how the addi-

tion of a new primitive to the model can overcome the problem.

Since the focus of this paper is on the need for copy-collect, we have not

given details of the implementation of the primitive. However, the primitive

has been implemented in our distributed kernel. The cost in terms of messages

between the di�erent distributed sections of the tuple space is comparable to

an in. It has been suggested that copy-collect, because of the duplication of

the tuple spaces, may require large amounts of memory to cope with all the

tuple duplication. Although currently physical duplication does occur in our

implementation, a tuple storage method where tuples are not duplicated has

been designed.

In order to ensure that the copy-collect performs as the informal semantics

indicate, then the implementation must support the ordering of outs. That is if a

single process creates a local tuple space and then performs two out operations,

the tuple space must never contain the second tuple and not the �rst. We think

that this is a logical thing to assume as an out is a non-blocking primitive and

can therefore be considered atomic. However, some implementations[10] do not

support the ordering of outs.

Recent work has shown that copy-collect has other uses as well as solving

this problem[11]. One of the biggest problems for �ne grained parallel program-

ming using the Linda model is the need to add extra synchronisation. This extra

synchronisation can often rapidly become a bottleneck, causing very poor scalab-

ility. We have successfully used the primitive to act as a means for polling the

condition of processes, so each process maintains it own state tuple in a common



tuple space. A copy-collect allows a broker process to interrogate the states

tuples, without a�ecting the workers, and determine if termination has occurred.
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cessing. In J.P. Banâtre and D. Le M�etayer, editors, Research Directions in High-

Level Parallel Programming Languages, volume 574 of Lecture Notes in Computer

Science. Springer Verlag, 1991.

10. Scienti�c Computing Associates. Linda: User's guide and reference manual. Sci-

enti�c Computing Associates, 1995.

11. A. Wood and A. Rowstron. Deadlock and algorithm design: Stable marriages in

Linda. Submitted to Parallel Processing Letters, 1995.

This article was processed using the L

A

T

E

X macro package with LLNCS style


