
State- and Event-based Reative Programming

in Shared Dataspaes

Nadia Busi

1

, Antony Rowstron

2

and Gianluigi Zavattaro

1

1

Dipartimento di Sienze dell'Informazione, Universit�a di Bologna,

Piazza di Porta S. Donato 5, I-40127 Bologna, Italy.

E-mail: fbusi,zavattarg�s.unibo.it

2

Mirosoft Researh, 7 J J Thomson Avenue, Cambridge, CB3 0FB

E-mail: antr�mirosoft.om

Abstrat. The traditional Linda programming style, based on the in-

trodution and onsumption of data from a ommon repository, seems

not adequate for highly dynami appliations in whih it is important

to observe modi�ation of the environment whih our quikly. On the

other hand, reative programming seems more appropriate for this kind

of appliations. In this paper we onsider some approahes reently pre-

sented in the literature for embedding reative programming in shared

dataspaes, we present a possible lassi�ation for these approahes, and

we perform a rigorous investigation of their relative advantages and dis-

advantages.

1 Introdution

The development of Linda-like oordination languages [Gel85℄ for use over wide-

area networks has driven the onsideration of new primitives being added to

allow new styles of oordination. One set of suh primitives are those that allow

reative-programming, essentially allowing a program to be noti�ed on the inser-

tion of tuples into partiular tuples spaes, or dataspaes. Examples of Linda-

like oordination languages inluding suh primitives are JavaSpaes [W

+

98℄,

TSpaes [WMLF98℄ and WCL [Row98℄.

One interesting observation is that the primitives inorporated within the

oordination languages, whilst all aiming to provide support for reative pro-

gramming, have di�erent (informal) semantis. Indeed, it is possible to lassify

the primitives inorporated as being: (1) state-based, (2) event based, and (3)

hybrid.

In this paper we provide a formal semantis to be used to ompare the ex-

pressive power and the interhangeability of these reative mehanisms, where

by interhageability we mean the possibility to substitute one mehanism in

plae of the others without a�eting the internal behaviour of the oordinated

omponents.

For eah of the lasses we onsider a typial oordination primitive, for larity

we assume there is a single dataspae:

(1) forEah(a; P): spawns an instane of proess P for eah ourrene of a

urrently in the dataspae;

(2) notify(a; P): produes a listener, that we denote with on(a; P), whih will

spawn an instane of P eah time a new a is produed;

(3) monitor(a; P): spawns an instane of proess P for eah ourrene of a

urrently in the dataspae, and produes a listener on(a; P) whih will spawn

an instane of P eah time a new a is produed.

Furthermore, for event-based mehanisms we onsider a dereg(a; P) primitive

whih removes one ourrene of listener on(a; P).

The primitive notify has been proposed as a oordination operations by

JavaSpaes [W

+

98℄, monitor has been introdued for the �rst time by one of

the authors in WCL [Row98℄, while forEah is an adaptation to our ontext

of the so-alled opy-ollet operation [RW98℄: this primitive, proposed as

a solution for the typial multiple-read problem of Linda, has the ability to

atomially opy all the data satisfying a ertain pattern from one dataspae to

another.

In this paper we demonstrate that the three approahes are equivalent by

showing how eah of the approahes an be reprodued in terms of the others.

However, only some of these translations are adequate for open environments

(new omponents may be introdued in the system at run time and therefore

dynamially); in partiular, the mapping from the state- to the event-based

approah and vie versa are valid only for losed appliations (where the om-

ponents involved in the system are a priori known and therefore statially).

In Setion 2 we further motivate the introdution of reative primitives. In

Setion 3 we present a proess alulus used to perform a rigorous investigation

of the three reative primitives; the results of this omparison are reported in

Setion 4. Finally, Setion 5 ontains some onlusive remarks.

2 Reative Programming in Shared Dataspaes

In order to demonstrate why reative programming primitives are attrative in

Linda-like oordination languages, let us onsider some of the funtionality of

a simple instant messenger type tool: the funtionalities that allows a user to

display a list of \buddies" and their urrent status (e.g., in meeting, at lunh,

busy and so forth).

Eah user runs a buddy list agent whih enables them to signal to other users

what their urrent status is, and to observe the status of the other users. A user

an hange their state by pressing buttons on the buddy list agent. Although

this example is simple, it demonstrates the power of reative programming.

A simple way to reate the buddy list agent is to reate a shared dataspae

into whih the buddy list agents plae tuples representing their status. Whenever

a user starts a buddy list agent, it inserts a status tuple into the shared dataspae,

ontaining the user's name and their initial status. When a user hanges their

status in the buddy list agent, the agent removes their status tuple and inserts a

new tuple with the user's name and their new status. When the agent starts, a

list of all users with a status tuple is displayed, also showing their urrent status.

As other users hange their states, these hanges are reeted on all the users

buddy lists.

The state tuples in the shared dataspae at any one time represent the global

status of (most of) the users and a buddy list agent an examine these tuples to

determine who is urrently available and their status. This means the appliation

does not involve a entralised oordinator. It should be noted that the tuple spae

does not neessarily ontain the entire global state beause tuples are removed

to be updated. Therefore, if a buddy list agent is updating their user's status

tuple, the user will not be represented by a tuple in the tuple spae.

The implementation of suh a sheme using the standard Linda primitives is

not easy, requiring shared ounters and so forth. However, reative programming

primitives should be able to enable this programming style.

So, let us onsider how the monitor primitive an be used in this example.

When a buddy list agent is started it performs a monitor on the shared tuple

spae. This has the e�et of returning all the urrent state tuples and any ones

that are inserted in future. In the desription of the buddy list agent it was de-

sribed how it is possible for the shared dataspae not to ontain all state tuples

as one or more of the agents may be updating their status tuple. However, this

does not matter beause any agent updating their status tuple will reinsert the

status tuple. When this ours the monitor primitive will onsider the inserted

tuple and return it. When a buddy list agent reeives the tuple it is able to hek

the users name loally and disover whether the tuple represents the status of

as yet unseen user or if it is an update of an existing user's status.

The monitor primitive was introdued in WCL [Row98℄. It expliitly returns

the tuples that math the template in the dataspae, as well as tuples subse-

quently inserted (until a dereg is performed). JavaSpaes, in ontrast, provides

a notify primitive whih does not return tuples that are already in the tuple

spae whih math the template, simply tuples inserted subsequently

1

. This has

several side e�ets, one is that the notify primitive an not be used in the same

way as the monitor primitive in the buddy list example. From a programmer's

perspetive, the issue is how to ensure that eah status tuple is read one. If all

mathing tuples in the dataspae are retrieved prior issuing the notify primitive

(for example using a forEah primitive), a tuple an be inserted one the forEah

has ompleted but before the notify has been started, and therefore, be missed.

Alternatively, if the notify is issued �rst, and after a forEah is performed, a

single tuple an be returned twie (and there is no expliit ordering). Therefore,

from a programmers perspetive the use of a monitor appears more powerful

and exible.

1

It atually returns a noti�ation that a tuple has been inserted not the tuple, and

the proess must expliitly retrieve the new tuple.

3 The Calulus

In this setion, we introdue a proess alulus based on the Linda oordination

primitives plus the reative mehanisms disussed in the Introdution,

By borrowing typial tehniques from the tradition of proess aluli for

onurreny (e.g., Milner's CCS [Mil89℄), an agent is desribed as a term of an

algebra where the basi ations are typial Linda oordination primitives or one

of the onsidered reative based oordination operations.

To be general, we onsider a denumerable set of names for data, alled Data,

ranged over by a, b, : : :. The set Prog of programs, ranged over by P , P

0

, : : :, is

the set of terms generated by the following grammar:

P ::= 0 j �:P j hai j on(a; P) j K j P jP

� ::= out(a) j in(a) j rd(a) j

forEah(a; P) j notify(a; P) j monitor(a; P) j dereg(a; P)

where � denotes an instane of one of the possible oordination primitives, and

K stands for a generi element of a set Name of program names; we assume

that all program name ourrenes are equipped with a orresponding (guarded)

de�ning equation of the form K = P . Program names are used to support

reursive de�nitions as, for example, in the term Ren

ab

= in(a):out(b):Ren

ab

,

whih represents a program able to repeatedly rename messages of the kind a in

messages of the kind b.

A term P is the parallel omposition (we use the standard parallel om-

position operator j) of the ative programs, plus the data whih are urrently

available in the data repository, and terms whih denote listeners used for the

modeling of event-based reative programming. Term 0 represents a program

that an do nothing. Term �:P is a program that an do the ation � and after

behaves like P . The term hai denotes an instane of datum a whih is urrently

available for rd(a) and in(a) operations; on the other hand, on(a; P) represents

a listener responsible to ativate a new instane of program P eah time a new

ourrene of datum a is produed.

In the following we will exploit a strutural ongruene relation in order to

equate terms whih represents the same system even if they are syntatially

di�erent. Let equiv be the least ongruene relation satisfying:

P jQ � QjP P j(QjR) � (P jQ)jR

P j0 � P P � K if P = K

In the following we will reason upto strutural ongruene, i.e., we will not make

any distintion between P and Q whenever P � Q.

We use the following notation: P 62 R (to indiate that P is not a subterm of

program R),

Q

n

P (to denote the parallel omposition of n instanes of program

P), and

Q

i

P

i

(to denote the parallel omposition of the indexed programs P

i

).

The operational semantis is de�ned by the transition relation (Prog;�!)

de�ned as the least relation satisfying the axioms and rules reported in Table 1.

in(a):P jhaijR �! P jR

rd(a):P jhaijR �! P jhaijR

forEah(a; P):Qj

Q

n

haijR �! Qj

Q

n

P j

Q

n

haijR hai 62 R

notify(a; P):QjR �! Qjon(a; P)jR

monitor(a; P):Qj

Q

n

haijR �! Qj

Q

n

P jon(a; P)j

Q

n

haijR hai 62 R

dereg(a;P):Qjon(a; P)jR �! QjR

out(a):P j

Q

i

on(a; P

i

)jR �! P jhaij

Q

i

P

i

j

Q

i

on(a; P

i

)jR

for any S,

on(a; S) 62 R

Table 1. The operational semantis.

In the following we denote by P �!

�

P

0

the fat that either P � P

0

or there

exist P

0

: : : P

n

suh that P

0

� P , P

n

� P

0

, and P

i

�! P

i+1

(for 0 � i < n).

The �rst two axioms deal with the in(a) and rd(a) oordination operations:

both operations require the presene of a term hai; in the seond ase the result

of the exeution of the operation is that this term is onsumed.

The third axioms desribe the forEah(a; P) operation: the result of its ex-

eution is the spawning of a new proess P for eah instane of hai (observe

that this is ensured by the side ondition hai 62 R). The result of the exeu-

tion of the notify(a; P) operation is the spawning of the listener on(a; P). The

monitor(a; P) primitive ombines the two above operations: a new proess P is

spawned for eah instane of hai and a new listener on(a; P) is produed.

The dereg(a; P) requires the presene of a listener on(a; P), and this term is

removed as e�et of the exeution of this operation.

The out(a) operation produes a new term hai; moreover, for eah listener

on(a; P) in the environment, a new program P is spawned (observe that this is

ensured by the side ondition: for any S, on(a; S) 62 R).

In the following we will fous on three variants of the alulus, in whih

only one among the three reative primitives forEah, notify, and monitor

is onsidered. The three aluli are denoted with L[forEah℄, L[notify℄, and

L[monitor℄, respetively. We will also onsider a fourth subalulus in whih

both the notify and the forEah operations are onsidered: this alulus is

denoted by L[forEah; notify℄.

4 Comparing the Reative Mehanisms

In this setion we ompare the expressive power of the di�erent reative meha-

nisms by investigating the enodability of one mehanism in terms of the others.

We will show that in general, for eah pair of aluli there exists an enoding

funtion from the �rst alulus to the seond.

Two kinds of enodings are used: one adequate for losed systems only, and

one suitable for open systems too. In the �rst ase, indeed, it is neessary to

assume that all the programs involved in the system are a priori known; on the

other hand, the seond lass of enodings does not make this kind of assumption.

To be more preise, we state that an enoding funtion [[[℄℄℄ from one alulus

to another is open if the following ostraints are satis�ed:

[[[P ℄℄℄ = [[P ℄℄j

Q

n(P)

R

a

[[P jQ℄℄ = [[P ℄℄j[[Q℄℄

where n(P) denotes the set of names of data whih our in the program P , and

R

a

denotes a program (depending on the onsidered enoding) used to manage

the name a ourring inside P .

We refer to this lass of enodings as \open" beause the addition of a new

program Q in parallel with P does not require to reompute the overall enoding

of P ; indeed, given P , its enoding [[[P ℄℄℄ and a program Q to be added in parallel

with P , we have that the new enoding

[[[P jQ℄℄℄ = [[P ℄℄j[[Q℄℄j

Q

n(P)[n(Q)

R

a

= [[[P ℄℄℄j[[Q℄℄j

Q

n(Q)nn(P)

R

a

an be obtained simply by adding new programs in parallel with the initial

enoding [[[P ℄℄℄

open encoding

non−open encoding

notifyforEach

monitor

Fig. 1. Summary of the enodings.

The results presented in the rest of this setion are summarized in Figure 1. In

Subsetion 4.1 (resp. 4.2) we show the existene of an open enoding of L[notify℄

(resp. L[forEah℄) in L[monitor℄. This means that the monitor primitive is ex-

pressive enough to model both the notify and the forEah operations. We

show the existene of an open enoding of L[monitor℄ in L[forEah,notify℄ in

Subsetion 4.3.

As far as stati systems are onerned, also the notify and the forEah

primitives are interhangeable: we show the existene of non{open enodings of

L[notify℄ in L[forEah℄ (and vie versa) in Subsetion 4.4 (resp. 4.5). By ompos-

ing eah of these enodings with the open enoding of the monitor primitive in

the language ontaining both the notify and the forEah operations, we obtain

a non{open enoding of L[monitor℄ in L[notify℄ (and in L[forEah℄).

4.1 Enoding L[notify℄ in L[monitor℄

In this setion we show that it is possible to model the event-based reative

mehanism of the notify primitive using the monitor operation.

The hybrid approah of the monitor primitive observes all the data already

available at the instant in whih the operation is performed, as also the fu-

ture inoming entries. On the other hand, the notify operation observes only

the inoming entries. In order to overome this di�erene, for eah datum hai

we exploit an auxiliary datum ha

0

i; this kind of data are produed and subse-

quently removed every time an out(a) operation is performed. In this way the

auxiliary data ha

0

i are not persistent in the dataspae, but they are stored only

temporarily.

When we need to model a notify(a; P) operation, we use monitor(a

0

; P)

whih observes the auxiliary data only; as these data are not persistent, only

subsequent produtions will be observed.

Formally, the enoding funtion is de�ned as [[[P ℄℄℄ = [[P ℄℄ where [[P ℄℄ is indu-

tively de�ned as follows:

[[0℄℄ = 0 [[hai℄℄ = hai

[[on(a; P)℄℄ = monitor(a

0

; [[P ℄℄) [[K℄℄ = K

0

[[P jQ℄℄ = [[P ℄℄j[[Q℄℄ [[�:P ℄℄ = �:[[P ℄℄ � 6= notify(a;Q); out(a)

[[notify(a; P):Q℄℄ = monitor(a

0

; [[P ℄℄):[[Q℄℄

[[out(a):P ℄℄ = out(a

0

):in(a

0

):out(a):[[P ℄℄

where, for eah program name K in L[notify℄ with de�nition K = P , we assume

the existene of a orresponding K

0

in L[monitor℄ with de�nition K

0

= [[P ℄℄.

Moreover, we assume that for eah enoding [[[P ℄℄℄ the auxiliary names a

0

are

di�erent from eah of the names of data ourring in P .

This enoding satis�es the above ontraints; thus it is open. Moreover, we

have that it is also homomorphi with respet to the parallel operation, i.e.,

[[[P jQ℄℄℄ = [[[P ℄℄℄j[[[Q℄℄℄. In the terminology of [dBP91℄ this property is alled modu-

larity with respet to the parallel omposition operator.

The orretness of this enoding is formally stated by the following theorem

whih states that, given a program P of L[notify℄, eah omputation step of P

an be simulated by [[P ℄℄, and that eah omputation of [[P ℄℄ an be extended

in suh a way that it orresponds to an equivalent omputation of P . Due to

spae limit we do not report the proof of this theorem (as also the proofs of the

theorems in the following setions).

Theorem 1. Given a program P of L[notify℄ we have that:

{ if P �! P

0

then [[[P ℄℄℄ �!

+

[[[P

0

℄℄℄;

{ if [[[P ℄℄℄ �!

+

Q then there exists P

0

suh that Q �!

�

[[[P

0

℄℄℄ and P �!

+

P

0

.

An interesting property of this enoding onerns the use of the auxiliary

names a

0

. As stated above, data ha

0

i are produed (and subsequently removed)

simply to notify the exeution of out(a) operations. Observe that this prodution

and subsequent onsumption operations ould be exeuted in interleaving with

other operations performed by onurrent proesses. As an example onsider the

enoding [[notify(a; P)jout(a)℄℄ = monitor(a

0

; [[P ℄℄)jout(a

0

):in(a

0

):out(a). Con-

sider now the omputation of the enoding in whih �rst ha

0

i is produed and

onsumed, after the monitor operation is performed, and �nally, the out(a)

primitive is exeuted.

This omputation is partiularly of interest beause no reation is ativated

even if the output of hai is exeuted after the exeution of the program repre-

senting the notify(a; P) proess. However, this is not a problem for the enoding

beause this partiular omputation orresponds to the omputation of the ini-

tial program in whih the notify operation is exeuted only after the output of

hai.

4.2 Enoding L[forEah℄ in L[monitor℄

Now we onentrate on the modeling of the state-based primitive forEah using

the hybrid approah adopted by monitor. The di�erene between the two oper-

ations is that monitor observes not only the data already available, but is also

ativates a listener whih observes the future inoming entries. This di�erene

an be overed simply by removing this listener immediately after its ativation:

following this approah, a forEah operation is modeled by a monitor primitive

followed by a dereg. Formally, the new enoding an be de�ned as follows

[[[P ℄℄℄ = [[P ℄℄j

Y

a2n(P)

hlok

a

i

where [[P ℄℄ is indutively de�ned as above, with only two non-trivial ases

[[forEah(a; P):Q℄℄ = in(lok

a

):monitor(a; [[P ℄℄):

dereg(a; [[P ℄℄):out(lok

a

):[[Q℄℄

[[out(a):P ℄℄ = in(lok

a

):out(a):out(lok

a

):[[P ℄℄

where we assume that for eah enoding [[[P ℄℄℄ the auxiliary names lok

a

are all

distint from the names a ourring inside P .

Also in this ase the orretness of the enoding is stated by a theorem similar

to Theorem 1; the di�erene here is in the fat that we have to onsider also the

data hlok

a

i.

Theorem 2. Given a program P of L[forEah℄ we have that:

{ if P �! P

0

then [[[P ℄℄℄ �!

+

[[[P

0

℄℄℄j

Q

a2n(P)nn(P

0

)

hlok

a

i;

{ if [[[P ℄℄℄ �!

+

Q then there exists P

0

suh that P �!

+

P

0

and

Q �!

�

[[[P

0

℄℄℄j

Q

a2n(P)nn(P

0

)

hlok

a

i.

The enoding exploits, for eah name of datum a ourring in the soure

program P , the auxiliar datum hlok

a

i, to implement mutual exlusion between

the exeution of the programs orresponding to the output operation out(a)

and the reative operations forEah(a). Mutual exlusion is ahieved simply by

foring the withdrawal (and subsequent release) of the datum hlok

a

i before (and

after) eah sequene of ritial operations to be exeuted in mutual exlusion.

This loking poliy is neessary in order to ensure that the listener produed

by the exeution of a monitor(a) operation is deregistered before a subsequent

output operation out(a) is performed (e.g., by some other onurrent proess).

Consider, as an example, the enoding of haijforEah(a; out(a)) if we do not

use mutual exlusion. In this ase the target program beomes

haijmonitor(a; out(a)):dereg(a; out(a))

This program ould ativate an in�nite omputation in the ase the dereg op-

eration is delayed inde�nitely: this ould happen if a loop is ativated in whih

�rst the reation out(a) is exeuted, and after the listener on(a; out(a)) reats

by spawning a new instane of out(a). On the other hand, the soure program

haijforEah(a; out(a)) has no in�nite omputation.

Observe that the loking poliy involves only operations on the same name;

the onurrent exeution of operations modeling an out(a) and a forEah(b; P)

primitive, for example, is allowed beause the two operations onsider the two

distint data hlok

a

i and hlok

b

i, respetively. Finally, observe that the enoding

is open even if it is not modular.

4.3 Enoding of L[monitor℄ in L[forEah,notify℄

In this setion we investigate the possibility to model the hybrid approah ex-

ploiting both the state- and the event-based approahes. Intuitively, this an be

done simply by modeling the monitor operation with a forEah immediately

followed by a notify operation.

Following this approah, we reat to the data urrently present in the repos-

itory as also to those data whih will be introdued subsequently. The unique

problem that may happen, ours if new interesting data are produed between

the exeution of the forEah and the notify operations; in this ase, the pro-

dued instane of the datum does not ativate the expeted reation. To avoid

this problem we ould exploit a loking poliy similar to the one adopted in the

previous subsetion.

Formally, we de�ne the new enoding as

[[[P ℄℄℄ = [[P ℄℄j

Y

a2n(P)

hlok

a

i

where [[P ℄℄ is indutively de�ned as above, with only three signi�ant ases

[[monitor(a; P):Q℄℄ = in(lok

a

):forEah(a; [[P ℄℄):

notify(a; [[P ℄℄):out(lok

a

):[[Q℄℄

[[on(a; P)℄℄ = on(a; [[P ℄℄)

[[out(a):P ℄℄ = in(lok

a

):out(a):out(lok

a

):[[P ℄℄

where we assume that for eah enoding [[[P ℄℄℄ the auxiliary names lok

a

are all

distint from the names a ourring inside P .

The orretness of this enoding is a onsequene of a theorem orresponding

to Theorem 2 where the languageL[monitor℄ is onsidered instead of L[forEah℄.

This enoding exploits a loking poliy whih avoid the onurrent exeution of

operations representing monitor and out operations exeuted on the same name

a: these operations must be exeuted in mutual exlusion in order to avoid that

some events are not observed (then some reations ould be lost).

As an example of undesired omputation onsider out(a)jmonitor(a; LOOP),

where LOOP is any program whih performs an in�nite omputation. This

program has only in�nite omputations as it is ensured that the reation LOOP

is ativated, both in the ase that out(a) is exeuted before monitor and in the

ase it is exeuted after. Consider now the enoding of this program in the ase

the loking poliy is not adopted:

out(a)jforEah(a; [[LOOP ℄℄):notify(a; [[LOOP ℄℄)

This seond program has at least one �nite omputation; indeed onsider the

ase in whih out(a) is sheduled exatly between the exeution of the forEah

and the notify operations.

One ould think to solve this problem simply by hanging the order of the

two reative operations obtaining the new enoding:

out(a)jnotify(a; [[LOOP ℄℄):forEah(a; [[LOOP ℄℄)

This new program has only in�nite omputations; however, it ould ativate

the undesired omputation in whih two reations are ativated in the ase the

out(a) operation is exeuted in interleaving with the two reative primitives.

Also in this ase, the loking poliy involves only onurrent operations per-

formed on the same name. Similarly to the previous subsetion, the enoding is

open even if not modular.

4.4 Enoding L[notify℄ in L[forEah℄

In the previous subsetions we have formally proved the intuitive result that the

hybrid paradigm is powerful enough to model both the event- and the state-based

reative approahes; moreover, we showed that the notify and the forEah

primitives permit to emulate the hybrid monitor operation (at the prie of in-

troduing some loking mehanism). It is also interesting to observe that all the

enodings that we have presented are suitable for open appliations.

In this setion we start the investigation of the modeling of the event-based

approah using the state-based one. The interesting result is that even if an en-

oding exists, it is not suitable for open appliations; namely, it does not satisfy

the onstraints we have �xed for open enodings. The problem is that the enod-

ing that we present requires the a priori knowledge of all the possible programs

that will be exeuted in the system. This is against the basi requirements of

open appliations in whih we usually assume that there exist omponents of

the system whih are added at run-time.

The enoding is based on the idea that listeners an be represented by auxil-

iary data; namely, for eah possible listener on(a; P

a

i

) we use an auxiliary datum

ha

i

i whih is introdued in the dataspae. Whenever an output operation out(a)

is performed, the presene of these auxiliary data ha

i

i is heked, and for eah

of them the orresponding reation is ativated; this operation an be obtained

simply by exeuting a sequene of operations forEah(a

i

; P

a

i

) for all possible

reations P

a

i

. The drawbak of this approah is that it is neessary to know a

priori all the possible reations P

a

i

whih ould be involved.

Formally, let P be a program of L[notify℄ to be enoded in L[forEah℄; for

eah name a ourring in P , i.e., a 2 n(P), we denote with ON

P

(a) the programs

P

a

1

; : : : ; P

a

l

whih ould be the possible reations assoiated to a in P , i.e., all

those programs P

a

appearing in operations notify(a; P

a

) or terms on(a; P

a

). For

eah of the programs P

a

i

2 ON

P

(a), we onsider an auxiliary name a

i

and a

program name K

a

i

. With ON

P

we denote the funtion whih assoiates to eah

a 2 n(P) the programs in ON

P

(a).

The enoding is de�ned as follows

[[[P ℄℄℄ = [[P ℄℄

ON

P

j

Y

a2n(P)

hlok

a

i

where [[P ℄℄

ON

P

is indutively de�ned with only three non-trivial ases

[[notify(a; P

a

i

):Q℄℄

ON

P

= in(lok

a

):out(a

i

):out(lok

a

):[[Q℄℄

ON

P

[[on(a; P

a

i

)℄℄

ON

P

= ha

i

i

[[out(a):P ℄℄

ON

P

= in(lok

a

):forEah(a

1

;K

a

1

):forEah(a

2

;K

a

2

) : : :

forEah(a;K

a

l

):out(a):out(lok

a

):[[P ℄℄

ON

P

if ON

P

(a) = P

a

1

: : : P

a

l

where we assume that for eah enoding [[[P ℄℄℄ the auxiliary names lok

a

are all

distint from the names a ourring inside P , and that the program names K

a

i

are all distint from the other program names K ourring in P . For eah of this

program name K

a

i

, with P

a

i

2 ON

P

(a), we onsider the following de�nition

K

a

i

= [[P

a

i

℄℄

ON

P

.

The program names K

a

i

are used to model the orresponding reations P

a

i

.

This appraoh is neessary, e.g., to model programs of L[notify℄, see for example

notify(a; out(a)):out(a), whih have an in�nite behaviour even if they are not

reursively de�ned. This annot happen in L[forEah℄ where only reursively

de�ned programs ould give rise to in�nite omputations. As an example, on-

sider the following program orresponding to [[[notify(a; out(a)):out(a)℄℄℄ whih

exploit a reursive de�nition for the program name K

a

1

:

in(lok

a

):out(a

1

):out(lok

a

):in(lok

a

):forEah(a

1

;K

a

1

):out(lok

a

)

K

a

1

= in(lok

a

):forEah(a

1

;K

a

1

):out(lok

a

)

It is worth noting that this enoding does not satisfy the onstraints we have

�xed for open enodings; this beause the inner enoding funtion [[℄℄ depends on

the initial term onsidered by the outer enoding [[[℄℄℄. For example, enoding P

in parallel with Q is usually di�erent from enoding P in parallel with a di�erent

program R.

In this ase, the theorem proving the orretness of the enoding should be

rephrased in order to manage the new kind of non-open enoding.

Theorem 3. Given a program P of L[notify℄ we have that:

{ if P �! P

0

then [[[P ℄℄℄ �!

+

[[P

0

℄℄

ON

P

j

Q

a2n(P)

hlok

a

i;

{ if [[[P ℄℄℄ �!

+

Q then there exists P

0

suh that P �!

+

P

0

and

Q �!

�

[[P

0

℄℄

ON

P

j

Q

a2n(P)

hlok

a

i.

Also this enoding adopts mutual exlusion among the exeution of opera-

tions performed on the same name. In order to undertand the importane of

this loking poliy onsider the program notify(a; notify(a; LOOP)):out(a) in

whih it is ensured that only one reation an be ativated (i.e., LOOP annot

be ativated). On the other hand, if we onsider its enoding without the loking

poliy we obtain

out(a

1

):forEah(a

1

;K

a

1

):forEah(a

2

;K

a

2

):out(a)

K

a

1

= out(a

2

)

K

a

2

= LOOP

0

where LOOP

0

is the enoding of LOOP . This program ould give rise to an

undesired in�nite omputation in the ase the �rst reation K

a

1

is exeuted in

interleaving with the two forEah operations.

4.5 Enoding L[forEah℄ in L[notify℄

In this setion we onsider the problem of enoding the state-based reative

programming approah in the event-based one. Also in this ase we show that

the enoding exists, but it is not suitable for open appliations.

The idea on whih the enoding is based is to assoiate to eah datum hai a

group of listeners on(a

i

; P

a

i

), one for eah possible reation P

a

i

. In this ontext,

if we want to model the exeution of a forEah(a; P

i

) operation it is suÆient

to produe a datum ha

i

i: as reation to the prodution of this datum a num-

ber of reations P

i

, orresponding to the number of ourrenes of the listener

on(a

i

; P

a

i

), orresponding to the number of ourrenes of hai, are ativated.

Formally, let P be a program of L[forEah℄ that we want to enode in

L[notify℄; for eah name a ourring in P , i.e., a 2 n(P), we denote with RE

P

(a)

the programs P

a

1

; : : : ; P

a

l

whih ould be the possible reations assoiated to a

in P , i.e., all those programs P

a

appearing in operations forEah(a; P

a

). For

eah of the programs P

a

i

2 RE

P

(a), we onsider an auxiliary name a

i

and a

program name K

a

i

. With RE

P

we denote the funtion whih assoiates to eah

a 2 n(P) the programs in RE

P

(a).

The enoding is de�ned as follows

[[[P ℄℄℄ = [[P ℄℄

RE

P

j

Y

a2n(P)

hlok

a

i

where [[P ℄℄

RE

P

is indutively de�ned with only the following non-trivial ases

[[hai℄℄

RE

P

= haijon(a

1

;K

a

1

)jon(a

2

;K

a

2

)j : : : jon(a

l

;K

a

l

)

if RE

P

(a) = P

a

1

: : : P

a

l

[[out(a):P ℄℄

RE

P

= in(lok

a

):notify(a

1

;K

a

1

):notify(a

2

;K

a

2

) : : :

notify(a

l

;K

a

l

):out(lok

a

):out(a):[[P ℄℄

RE

P

if RE

P

(a) = P

a

1

: : : P

a

l

[[forEah(a; P

a

i

):Q℄℄

RE

P

= in(lok

a

):out(a

i

):out(lok

a

):[[Q℄℄

RE

P

[[in(a):P ℄℄

RE

P

= in(a):in(lok

a

):dereg(a

1

;K

a

1

):dereg(a

2

;K

a

2

) : : :

dereg(a

l

;K

a

l

):out(lok

a

):[[P ℄℄

RE

P

if RE

P

(a) = P

a

1

: : : P

a

l

where we assume that for eah enoding [[[P ℄℄℄ the auxiliary names lok

a

are all

distint from the names a ourring inside P , and that the program names K

a

i

are all distint from the other program namesK ourring in P . For eah of these

program names K

a

i

, with P

a

i

2 RE

P

(a), we onsider the following de�nition

K

a

i

= [[P

a

i

℄℄

RE

P

. For the same reasons disussed in the previous subsetion, also

this enoding is not open.

The theorem proving the orretness of the enoding should be rephrased as

follows.

Theorem 4. Given a program P of L[forEah℄ we have that:

{ if P �! P

0

then [[[P ℄℄℄ �!

+

[[P

0

℄℄

RE

P

j

Q

a2n(P)

hlok

a

i;

{ if [[[P ℄℄℄ �!

+

Q then there exists P

0

suh that P �!

+

P

0

and

Q �!

�

[[P

0

℄℄

RE

P

j

Q

a2n(P)

hlok

a

i.

Also this enoding adopts mutual exlusion among the exeution of opera-

tions performed on the same name. In order to understand the importane of this

loking poliy onsider the program out(a)jforEah(a; forEah(a; LOOP)); ob-

serve that if this program ativates the �rst reation, then also the seond one

will be exeuted (in this ase the program has an in�nite omputation).

Consider now the orresponding enoding in the ase we do not exploit the

loking poliy. There are two possible reations assoiated to the datum hai that

we denote with P

a

1

= forEah(a; LOOP) and P

a

2

= LOOP . The enoding is

notify(a

1

;K

a

1

):notify(a

2

;K

a

2

):out(a)jout(a

1

)

K

a

1

= out(a

2

)

K

a

2

= LOOP

0

where LOOP

0

is the enoding of LOOP . This program ould give rise to an

undesired omputation in whih only the �rst reation is ativated; onsider

the omputation in whih the �rst notify is exeuted, after the datum ha

1

i is

produed, the reationK

a

1

is ativated, and �nally ha

2

i is produed without pro-

duing any reation (beause the seond notify operation has not been exeuted

yet). In this ase even if the �rst reation is ativated the overall omputation

in �nite.

5 Conlusion

In this paper we have investigated three possible primitives for reative pro-

gramming to be embedded to Linda-like languages: forEah (reations depend

on the urrent state of the repository), notify (reations depends on the future

output operations), and monitor (whih ombines both the kind of reations).

We have showed that the three approahes are interhangeable: namely, we

have presented a possible way to translate any appliation developed following

an approah, in an equivalent one based on a di�erent kind of reative meh-

anism. The interesting fat is that some of the translations are not adequate

for open appliations, this beause they require to know a priori all the possible

programs involved in the system. The lesson we have learned is that the monitor

operation appears as the more powerful beause it permits to model the other

two primitives in a more exible way.

Putting together the results proved in this paper and in a previous pa-

per [BZ00℄ investigating the notify primitive only, we obtain the interesting

result that there exists a signi�ant gap of expressiveness between a reative

Linda (Linda extended with at least one of the three reative primitives) and

the basi Linda (with only input, output, and read operations). Indeed, in [BZ00℄

two of the authors proved that a proess alulus with only in and out opera-

tions is not Turing-powerful, while it beomes (weakly) Turing-powerful in the

ase the notify operation is added to the alulus. In this paper we showed

that notify an be modeled also with monitor and forEah, thus the same

expressiveness result holds also for these reative primitives.

Referenes

[BZ00℄ N. Busi and G. Zavattaro. On the Expressivenes of Event Noti�ation

in Data-Driven Coordination Languages. In Pro. of ESOP 2000, volume

1782 of Leture Notes in Computer Siene, pages 41{55. Springer-Verlag,

Berlin, 2000.

[dBP91℄ F.S. de Boer and C. Palamidessi. Embedding as a Tool for Language Com-

parison: On the CSP Hierarhy. In Pro. of CONCUR'91, volume 527,

pages 127{141. Springer-Verlag, Berlin, 1991.

[Gel85℄ D. Gelernter. Generative Communiation in Linda. ACM Transations on

Programming Languages and Systems, 7(1):80{112, 1985.

[Mil89℄ R. Milner. Communiation and Conurreny. Prentie-Hall, 1989.

[Row98℄ A. Rowstron. WCL: A web o-ordination language. World Wide Web

Journal, 1(3):167{179, 1998.

[RW98℄ A. Rowstron and A. Wood. Solving the Linda multiple rd problem using the

opy-ollet primitive. Siene of Computer Programming, 31(2-3):335{

358, 1998.

[W

+

98℄ J. Waldo et al. Javaspae spei�ation - 1.0. Tehnial report, Sun Mi-

rosystems, Marh 1998.

[WMLF98℄ P. Wyko�, S. MLaughry, T. Lehman, and D. Ford. T spaes. IBM

Systems Journal, 37(3):454{474, 1998.

