
An e�cient distributed tuple space

implementation for networks of workstations

Antony Rowstron

?

and Alan Wood

??

Department of Computer Science, University of York,

York, YO1 5DD, UK.

Abstract. In this paper an overview of a novel run time system for the

management of tuple spaces, which utilises implicit information about

tuple space use in Linda programs to maximise its performance. The ap-

proach is novel compared to other tuple space implementations because

they either ignore the information, or expect the programmer to provide

the information explicitly. A number of experimental results are given to

demonstrate the advantages of using the our approach.

1 Introduction

Linda is a well known coordination model[1]. For many years implementations

have followed very traditional routes based on the work at Yale[2]. However, since

the initial traditional implementations the model has evolved; one of the major

changes has been the addition of multiple tuple spaces. Most implementations

\tack" tuple space names onto tuples in an ad hoc fashion and subsequently

treating them like any other �eld within a tuple. Some implementations[3] use

the potential locality information that tuple spaces can provide, but expect the

programmer to provide explicit information about the \type" or \usage" of a

tuple space, thus explicitly declaring the locality of a tuple space.

Our new run-time tuple space management system (kernel) uses implicit

information to enable it to classify every tuple space as either a local tuple space

(LTS) or a remote tuple space (RTS) on the 
y and without extra communication

or programmer guidance. A LTS is one which can only be accessed by one process

and a RTS is one that many processes can access. What is novel about our

approach is the use of implicit information to enable the kernel to transparently

move large numbers of tuples around the system to gain optimum performance.

It should be stressed that making the distinction between LTSs and RTSs does

not alter the semantics of the Linda model, a user sees no distinction between a

LTS and RTS.

2 The novel implementation technique

A tuple spaces classi�cation controls where its tuples are stored. If the classi�c-

ation changes then the tuple space migrates to the correct storage place for its

??

Contact: fant,woodg@minster.york.ac.uk

?

Funded by an EPSRC CASE grant with British Aerospace Military Aircraft.



new classi�cation. The kernel itself is distributed and Figure 1 shows its general

structure. The kernel has two distinct sections, Tuple Space Servers (TSS) and

Local Tuple Space Managers (LTSM).

The TSS is a set of stand alone processes which together act as a tuple

server. They receive tuples and requests for tuples. All RTSs are stored in the

TSS, but usually distributed over many processes within the TSS. How tuples

are distributed between processes is not important for this paper

3

. The LTSM

is a set of library routines which are linked into user processes; LTSMs join and

leave the kernel with the user processes they belong to. A LTSM is able to �nd

information on whether a tuples space is a LTS or a RTS dynamically (with no

inter-process communication), and subsequently controls the movement of tuple

spaces. A tuple space will only ever migrate from a TSS to a LTSM or vice-versa

(never from LTSM to LTSM or TSS process to TSS process). A LTS is always

stored on the LTSM of the user process which know it as a LTS.

LTSMUser Process 

LTSMUser Process LTSM User Process 

LTSM User Process 
TSS

TSS

Fig. 1. Diagram showing the layout of the kernel.

When tuple space operations occur the LTSM checks internally to see if

the tuple space is a LTS. If so, the LTSM updates itself accordingly, with no

communication with the TSS. If it is a RTS the LTSM contacts the relevant TSS

process(es). The bulk movement of tuples occurs when either a bulk movement

primitive is performed (collect[6] or copy-collect[7]) or a tuple space handle

for a LTS is placed in a tuple in a RTS.

The bulk tuple space primitives require a source and a destination tuple

space. If the the classi�cation of both tuple spaces are the same then they are

performed in the same part of the kernel; LTS in a LTSM and RTS in the

TSS and there is no migration of tuples. If the source tuple space is a RTS

and destination is a LTS, then the TSS performs the duplication (if necessary)

and migrates (in one or more blocks of multiple tuples) the tuples to the correct

LTSM. If the source is a LTS and the destination a RTS then the LTSM performs

the duplication and migrates the tuples to the TSS. If no movement is required

there will not be any movement of tuples. When a tuple space handle for a LTS

is placed in a tuple in a RTS the LTSM checks to see if the handle refers to a

LTS. If so, the tuple space is migrated to the TSS (thus becoming a RTS).

In this section a very brief overview of the implementation techniques have

been presented, for more information see Rowstron et al.[8]. This describes why

the bulk movement of tuples is more e�cient than the single movement of tuples.

The most important point is that the system uses implicit information rather

than relying on extra explicit information provided by the programmer.

3

The method used is the same as for previous York kernels[4, 5].



3 Experimental results

In order to demonstrate the performance of the kernel we compare its perform-

ance with the LTSM enabled and disabled. When the LTSM is disabled the

kernel degenerates into an implementation similar to many more traditional

implementations[4, 5] because all tuple spaces are treated as RTSs and therefore

stored in the TSS.

Experiment 1 2 3 4 5

LTSM O� On O� On O� On O� On O� On

out 2.890 2.861 2.769 0.018 2.802 0.018 2.770 0.018 2.769 2.767

collect n/a n/a n/a n/a n/a n/a 0.007 0.038 0.007 0.007

in 3.224 3.227 3.270 0.017 3.303 3.877 3.258 3.670 3.255 0.056

Total 6.114 6.087 6.039 0.035 6.105 3.895 6.035 3.726 6.031 2.830

Table 1. Performance of the kernel with and without the LTSM.

Table 1 shows the experimental results (in seconds) for a number of experi-

ments using a 10 Mbit/s Ethernet and a TSS distributed over 4 Silicon Graphics

Indy workstations. Experiment 1 shows the time taken to place 1000 tuples in a

RTS using out and retrieve them using in. This demonstrates that there is no

signi�cant di�erence in time between the LTSM being on or o� (because in both

cases the tuple space is stored on the TSS). Experiment 2 is the same except

the tuple space can be classi�ed as a LTS. The results demonstrate that when

the LTSM is on it detects that the entire operation is local to the process. When

the LTSM is o� the tuple space is treated as a RTS and the execution times

re
ect this. Experiment 3 shows the time taken to place 1000 tuples in a LTS,

then place in UTS

4

a tuple containing the handle of that tuple space (so the tuple

space becomes a RTS) and then retrieve the tuples. This shows that the time

taken to perform the operation is less when the LTSM is on. This is because,

when the movement of tuple occurs (as the tuple is placed in the UTS), the tuples

are packed into larger packets for dispatching to the TSS. Experiment 4 shows

the time taken to place 1000 tuples in a LTS, then collect

5

them all into a RTS

and then retrieve them. As one would expect the times are comparable to those

of experiment 3, as essentially the same tuple space \movements" are occuring.

This again demonstrates how the bulk movement of tuples creates a more e�-

cient implementation. Experiment 5 shows the time taken to place 1000 tuples

in a RTS, then collect them all into a LTS and then retrieve them. The results

again demonstrate the e�ectiveness of the bulk movement of tuples and tuple

spaces. This is an important operation, as it represents the communications be-

haviour of the basic operations that a process has to perform to overcome the

multiple rd problem[7].

4

UTS is a universal tuple space, which all processes have access to.

5

This primitives moves all tuples which match a given template from a source tuple space to

a destination tuple space, and returns a count of the number of tuples moved[6].



These results demonstrate the e�ect that the LTSM has on the execution

time for a number of speci�c examples, and that the LTSM does not slow the

kernel down, and indeed that when used it provides large speed increases for

certain classes of operations. Within the scope of this paper it is not possible

to demonstrate the performance of the kernel against other kernels. We have

compared our kernel with a commercial version of Linda, called C-Linda

6

. For

certain classes of algorithms our kernel achieves a speedup of between 10 and

70 times. For more information on the performance of the kernel (including the

results for a \real-world" problem) see Rowstron et al.[8].

4 Conclusion

An overview of a new Linda kernel, which transparently uses bulk movement of

tuples to achieve performance increases over traditional implementation methods

has been presented. The bulk movement of tuples is achieved by using implicit

information about tuple spaces gathered on the 
y, rather than by using either

compile time analysis or explicit programmer added \hints".

Currently work is focusing on the development of a multi layer hierarchical

kernel, thereby altering the de�nition of tuple spaces from a discrete categor-

isation to a continuous one. This kernel uses the same implicit information to

provide better locality information to the kernel and will have the potential to

be used by hundreds of workstations.

References

1. N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,

32(4):444{458, 1989.

2. R. Bjornson. Linda on distributed memory multiprocessors. PhD thesis, Yale Uni-

versity, 1992. YALEU/DCS/RR-931.

3. B. Nielsen and T. Sorensen. Implementing Linda with multiple tuple spaces. Tech-

nical report, Aalborg University, Denmark, 1993.

4. A. Douglas, A. Wood, and A. Rowstron. Linda implementation revisited. In

Transputer and occam developments, pages 125{138. IOS Press, 1995.

5. A. Rowstron, A. Douglas, and A. Wood. A distributed Linda-like kernel for PVM.

In EuroPVM'95, pages 107{112. Hermes, 1995.

6. P. Butcher, A. Wood, and M. Atkins. Global synchronisation in Linda. Concur-

rency: Practice and Experience, 6(6):505{516, 1994.

7. A. Rowstron and A. Wood. Solving the Linda multiple rd problem. In Coordination

Languages and Models, volume 1061 of LNCS, pages 357{367. Springer-Velag, 1996.

8. A. Rowstron and A. Wood. An e�cient distributed tuple space implmentation for

networks of heterogenous workstations. Technical Report YCS 270, University of

York, 1996.

This article was processed using the L

A

T

E

X macro package with LLNCS style

6

Available from Scienti�c Computing Associates, Connecticut, USA.


