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Artificial intelligence (AI) and combinatorial optimization drive applications across 
science and industry, but their increasing energy demands challenge the sustainability 
of digital computing. Most unconventional computing systems1–7 target either AI or 
optimization workloads and rely on frequent, energy-intensive digital conversions, 
limiting efficiency. These systems also face application-hardware mismatches, whether 
handling memory-bottlenecked neural models, mapping real-world optimization 
problems or contending with inherent analog noise. Here we introduce an analog 
optical computer (AOC) that combines analog electronics and three-dimensional 
optics to accelerate AI inference and combinatorial optimization in a single platform. 
This dual-domain capability is enabled by a rapid fixed-point search, which avoids 
digital conversions and enhances noise robustness. With this fixed-point abstraction, 
the AOC implements emerging compute-bound neural models with recursive 
reasoning potential and realizes an advanced gradient-descent approach for 
expressive optimization. We demonstrate the benefits of co-designing the hardware 
and abstraction, echoing the co-evolution of digital accelerators and deep learning 
models, through four case studies: image classification, nonlinear regression, medical 
image reconstruction and financial transaction settlement. Built with scalable, 
consumer-grade technologies, the AOC paves a promising path for faster and 
sustainable computing. Its native support for iterative, compute-intensive models 
offers a scalable analog platform for fostering future innovation in AI and 
optimization.

Computing today is digital, but analog has a future. Exponential 
advances in digital hardware have both driven and benefited from 
the rise of artificial intelligence (AI), but its escalating energy and  
latency demands push digital specialization to its limits8. Analog 
approaches—leveraging optics1–4,9, analog electronic crossbars5,6 
and quantum annealers7—promise orders-of-magnitude gains in  
efficiency and speed. Existing hardware demonstrations focus either 
on AI inference1–3,10–13, which accounts for 90% of energy in commercial 
deployments14, or combinatorial optimization7,15, but none efficiently 
accelerate both on the same analog hardware.

Here we introduce the analog optical computer (AOC), a non-
traditional computing platform designed for both AI inference and 
combinatorial optimization. By combining optical and analog elec-
tronic components within a feedback loop, the AOC rapidly performs 
a fixed-point search without digital conversions. In each loop iteration 
of approximately 20 ns, optics handle matrix–vector multiplications, 
whereas analog electronics perform nonlinear operations, subtraction 
and annealing (Fig. 1a–c). Over multiple iterations, the fixed-point 

nature of the AOC enhances noise robustness, which is essential for 
analog hardware.

The AOC’s fully analog architecture and fixed-point abstraction 
address two key challenges in unconventional computing. First, hybrid 
architectures typically accelerate linear operations but rely on digital 
nonlinearities, resulting in energy-intensive conversions2,13, which are 
eliminated in the AOC. Second, they often face an application-hardware 
gap: memory-bound AI models are hard to accelerate14, and prevalent 
binary optimization formulations limit practical applicability16. With 
its unifying fixed-point abstraction, the AOC closes this gap (Fig. 1d,e).

For inference, the AOC accelerates emerging iterative models, 
including fixed-point models such as deep-equilibrium networks17, 
which are compute-bound and costly on digital chips but naturally 
suited for the AOC. These models enable iterative reasoning with 
dynamic inference time computation18,19. For optimization, the AOC 
supports quadratic unconstrained mixed optimization (QUMO), a flex-
ible formulation with binary and continuous variables that captures 
real-world problems20.
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The current small-scale AOC accelerates equilibrium models with 
up to 4,096 weights at 9-bit precision, performing image classification 
and nonlinear regression tasks (Fig. 1f). To enable these inference tasks, 
we design a differentiable digital twin (AOC-DT) that achieves over 99% 
correspondence with the physical hardware. For optimization, the AOC 
solves QUMO problems with up to 64 variables, tackling real-world 
applications such as medical image reconstruction and financial trans-
action settlement. The AOC-DT is used to demonstrate scalable solu-
tions for industrial problems, such as reconstruction of a brain scan 
with over 200,000 problem variables. Compared with well-known 

heuristics21 and commercial solvers22, we set state-of-the-art results on 
several instances from a standard quadratic optimization benchmark23.

Designed with consumer-grade optical and electronic components, 
the AOC leverages mature manufacturing processes, with future scal-
ability relying on tighter coupling of integrated analog electronics 
with integrated three-dimensional (3D) optics. By eliminating digital–
analog conversions and merging compute and memory to bypass the 
von Neumann bottleneck, the AOC can achieve substantial efficiency 
gains albeit specialized. With projected performance around 500 tera- 
operations per second (TOPS) per watt at 8-bit precision—over 100-times  
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Fig. 1 | The AOC and its applications. a, A schematic of the AOC hardware 
architecture with key components 1–4. b, The AOC hardware architecture.  
c, Key hardware components. The microLED array (1) is the light source and 
represents neural network activations or optimization variables. The spatial 
light modulator (2) stores neural network weights or optimization problem 
coefficients, and multiplies them with the incoming light. The photodetector 
array (3) adds and transfers optical signals into the analog electronic domain. 
The nonlinearity, subtraction, annealing and other computations are applied 
in analog electronics (4). d, ML inference as a fixed-point search. The AOC 
hardware is used to accelerate ML inference, using an ML equilibrium model 

that entails finding their fixed points. e, Quadratic optimization as a fixed-
point search. A schematic of the convergence to minima over time for an 
optimization problem with continuous (horizontal bars) and binary (vertical 
arrows) variables, experiencing gradients (red) from other variables until 
convergence to the fixed point (green). f, Applications realized on the AOC 
hardware. The AOC hardware performs inference for MNIST and Fashion-
MNIST classification tasks and nonlinear regression, and also solves industrial 
optimization problems, including medical image reconstruction and transaction 
settlement between financial institutions.
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more efficient than leading graphics processing units (GPUs)24—the 
AOC represents a promising step towards sustainable computing.

Fixed-point abstraction
The AOC hardware unifies machine learning (ML) inference and opti-
mization paradigms through an iterative fixed-point search. In ML, the 
inference of equilibrium17 and energy-based25 models entails finding 
their fixed points, whereas in optimization, objective minima repre-
sent fixed points of gradient-descent-based methods. The core AOC 
abstraction realizes the following iterative update rule:

s s s s s bα t βW f γ= ( ) + ( ) + ( − ) + . (1)t t t t t+1 −1

At each iteration t, the continuous real-valued state vector s ∈t
NR  

is updated to st+1, with each iteration corresponding to a signal 
round-trip time in hardware. Although equation (1) is discrete, the AOC 
operates in a continuous clock-free manner. The annealing schedule 

Rα t T( ) : [0, ] →  controls the state magnitude reduction per iteration, 
similar to residual connections in neural networks26, where T is the 
number of timesteps in the annealing schedule. The factor β determines 
the matrix–vector product scale, where the matrix W encodes neural 
network weights or an optimization problem, and R Rf : →N N  is an 
element-wise nonlinear function. The coefficient γ ∈ (0, 1) introduces 
momentum which, in continuous time, corresponds to the second-order 
differential equation dynamics (Supplementary Information sec-
tion G.10), generalizing the AOC abstraction beyond first-order mod-
els such as Hopfield networks. The bias vector R∈ Nb  represents 
additional problem-specific information.

The introduced fixed-point abstraction is ideally suited for analog 
feedback devices, such as the AOC, as it is compute-bound, requires no 
intermediate memory and is noise-tolerant: the attracting fixed point 
pulls the trajectory closer at every iteration, counteracting analog 
noise.

Hardware
The AOC hardware combines 3D optical and analog electronic tech-
nologies to accelerate all the compute operations in the fixed-point 
abstraction described by equation (1): matrix–vector multiplication, 
nonlinearity, annealing, addition and subtraction. In each fixed-point 
iteration, the analog signal alternates between optical and electrical 
domains, giving the system state st a dual opto-electronic nature.

Matrix–vector multiplication occurs in the optical domain, where 
the state vector st is encoded in the light intensity of arrays of micro 
light-emitting diodes (microLEDs), whereas the weight matrix W is 
represented by spatial light modulator (SLM) pixels (Fig. 1a). Light from 
each microLED fans out across an SLM row for element-wise multipli-
cation, and the resulting light signals are summed column-wise by a 
photodetector array27. In contrast to planar optical architectures, the 
AOC leverages 3D optics with its efficient fan-in and fan-out of light 
in the third dimension through the use of spherical and cylindrical 
optics, thus enabling inherently parallel and scalable multiplication 
operations of larger matrices28.

The result of the optical matrix–vector multiplication is measured in 
the electrical domain using a photodetector array, where the state vec-
tor st is represented as a voltage per detector. The remaining operations 
in equation (1) are implemented via analog electronics: a hyperbolic 
tangent (tanh) function for the element-wise nonlinearity, summing 
and difference amplifiers for addition and subtraction of analog signals, 
and variable gain amplifiers for the annealing schedule α(t) and the β 
factor. The circuit layout, with highlighted voltage readout position, 
is detailed in Extended Data Fig. 3.

The AOC hardware executes the iterative update rule from several 
to thousands of iterations until convergence to a fixed point, when 

the signal amplitudes are read out digitally. This all-analog operation 
minimizes the overhead of analog-to-digital conversions. The current 
hardware includes 16 microLEDs and 16 photodetectors, supporting 
a 16-variable state vector st, along with two SLMs to handle positive 
and negative entries of the matrix W (Fig. 1b,c). This configuration is 
sufficient to support inference for ML models and optimization tasks 
with up to 256 weights and can extend to 4,096 weights via problem 
decomposition, maintaining fully analog fixed-point iterations.

The AOC fixed-point abstraction targets a balance between general-
ity and efficient hardware implementation. To illustrate its versatility, 
the remainder of the paper presents four case studies highlighting how 
equilibrium ML models can be applied to classification and regression 
tasks, and how the QUMO paradigm can represent real-world applica-
tions in finance and healthcare, while utilizing the same AOC hardware.

AOC for machine learning
Analog equilibrium model
The AOC supports neural equilibrium models, which have been 
widely applied across various domains from language17 to vision29. 
Equilibrium models typically follow a fixed-point iterative update rule, 
st+1 = Network(st), with examples including classic Hopfield networks30 
and their modern variants31, as well as deep-equilibrium models17. These 
models operate as self-recurrent neural networks with constant input, 
driving the hidden state to a fixed point that represents the network 
output (Fig. 1d). Their dynamic depth enables recursive reasoning, leads 
to improved scaling laws32 and enhances out-of-distribution generali-
zation compared with feedforward models18,33. Recent self-recurrent 
language models with billions of parameters show impressive rea-
soning capabilities, surpassing fixed-depth models in representation 
power34,35. We demonstrate that the AOC supports models with such 
recurrent nature and achieves greater out-of-distribution generaliza-
tion (Extended Data Fig. 6).

As illustrated in Fig. 2a, the complete neural network architecture 
includes an input projection (IP) layer, the equilibrium model and an 
output projection (OP) layer. The network training is performed digi-
tally using the AOC-DT, whereas the equilibrium model is deployed on 
the AOC hardware for inference.

For equilibrium models, the fixed-point iterative update follows 
from equation (1) by setting α(t) → α, γ(t) → 0, b → b + xproj, and using 
the element-wise tanh nonlinearity:

α βW= + tanh( ) + + . (2)t t t+1 projs s s b x

Here b is the trained bias and xproj encodes the equilibrium  
model input. The trained weight matrix W is quantized to 9-bit integers  
(Methods), separated into positive and negative components, 
and loaded into the corresponding SLMs. The initial state is set to 
s0 = b + xproj.

During inference, the original data x go through the IP layer as 
xproj = WIPx + bIP, where WIP and bIP are the trained IP weights and biases. 
For the given xproj, the equilibrium model iterates on the AOC hardware 
until convergence, with the fixed-point state s* read out as voltages 
(Extended Data Fig. 5). Finally, the inference result is obtained by apply-
ing the OP layer to the AOC solution as y = WOPs*  + bOP, where WOP and 
bOP are the trained OP weights and bias.

In the current hardware, the equilibrium model is implemented for 
a single-layer network with a 256-weight matrix, without symmetry 
constraints. A recurrent multilayer neural network can be constructed 
using a lower subdiagonal block-wise matrix (Fig. 3), whereas a contin-
uous-valued Hopfield network arises for a symmetric matrix. We note 
that neural networks conventionally apply the activation function and 
weight matrix in a different order than in equation (2). However, this 
leads to only a minor difference in practice owing to the self-recursive 
process36.
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The hardware realizes the equilibrium model as in equation (2) for 
two ML inference tasks: image classification and nonlinear regres-
sion (Fig. 2b). In both cases, models are trained digitally through the 
AOC-DT and are deployed on the hardware without further calibra-
tion, which requires high hardware precision and high fidelity of the 
AOC-DT (Methods).

Regression case study
We show that the AOC hardware can run nonlinear regression models. 
Regression tasks require continuous-valued outputs, which are chal-
lenging owing to the inherently noisy nature of analog computations. 
This is in contrast to classification tasks discussed below where the 
output labels are discrete and only the class of the largest probability 
is selected. From a model perspective, nonlinear regression tasks  
are well suited to the 256-weight AOC as they require small input 
( RW ∈IP

16×1) and output (W ∈OP
1×16R ) projection matrices.

We select two nonlinear functions for regression: Gaussian and sinu-
soidal curves. In agreement with the AOC-DT results (see Supplementary 
Table 2), the hardware reproduces accurately both functions, as shown 
in Fig. 2c. The sinusoidal curve presents a greater challenge for accurate 
fitting than the Gaussian curve owing to its multiple minima and max-
ima, requiring higher AOC-DT fidelity. This may explain why the AOC 
hardware struggles to accurately fit the region near the right minimum 
of the sinusoidal curve. However, at no point does the AOC-DT curve 
fall outside the AOC standard deviation. We note the digital IP and OP 
layers alone would only be able to fit linear functions, highlighting the 
contribution of the equilibrium model running on the AOC hardware.

Classification case study
For the Modified National Institute of Standards and Technology 
(MNIST) and Fashion-MNIST datasets, the inputs ∈ 28×28Rx  are rescaled 
to [−1, 1] range and flattened into vectors. Hence, the IP and OP layers 
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Fig. 2 | AOC for ML inference. a, Top: the neural network architecture used for 
training and inference. During training, input data are projected into the latent 
space via an IP layer, processed by the AOC hardware’s digital twin (AOC-DT) 
and passed through the OP layer. Bottom: the inference process on the AOC 
hardware: the IP and OP layers interface with the hardware, which updates its 
initial state s0 until reaching the fixed-point state s*. b, During inference, MNIST 
and Fashion-MNIST images are passed through the IP layer and are fed into the 
AOC hardware. Intermediate states may be projected out to monitor progress, 
schematically showing evolution from a higher to a lower entropy distribution. 
Once converged, a softmax nonlinearity in the OP layer selects the highest-
probability class, whereas in regression, the OP layer outputs a continuous 
value y, with the MSE evaluated against ground truth (GNDTH) to assess 
performance. GNDTH is the true curve we want to regress against. c, The 
nonlinear regression results are demonstrated for the AOC hardware over a 

Gaussian curve (left) and sinusoidal curve (right) with MSE losses of 3.75 × 10−3 
and 1.21 × 10−2, respectively. The shaded area around the AOC predictions 
represents the observed variability, that is, the standard deviation across the 
sampling window and repeated AOC runs with the same input (Methods).  
d, For the full test datasets of MNIST (left) and Fashion-MNIST (right), the AOC 
classification accuracy is compared with the performance of the AOC-DT and 
the feedforward model (FFM). Higher accuracies are achieved for larger models 
(4,096 weights), which are realized with a time-multiplexing technique. 
Hardware results align with AOC-DT simulations; the 4,096-weight hardware 
result slightly exceeds the AOC-DT, as it reflects the best of 2 seeds, whereas  
the AOC-DT accuracy is averaged. The dashed lines show the linear classifier 
performance; the error bars reflect the random-seed variability for the AOC-DT 
and experimental repeats for hardware (Methods).
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have dimensions 16 × 784 and 10 × 16, respectively. The test dataset 
results on the 256-weight AOC hardware are shown in Fig. 2d (see also 
Supplementary Table 4). The AOC-predicted labels match the AOC-DT 
results for 99.8% of the inputs.

The AOC results demonstrate the viability of digital training with 
subsequent weight transfer for opto-electronic analog inference. The 
contribution of the equilibrium model running on the AOC further 
becomes apparent when comparing the AOC results with a linear classi-
fier, which consists of digitally trained IP layer, a middle layer and an OP 
layer. We also train a simple feedforward model comprising an IP layer, 
a middle layer with tanh nonlinearity and an OP layer. Both linear clas-
sifier and feedforward models have the same number of parameters as 
the AOC hardware. Although the AOC achieves slightly higher accuracy 
(Fig. 2d), the simple nature of the MNIST and Fashion-MNIST datasets 
is unlikely to demonstrate the full potential of self-recurrent models. 
Looking ahead, this potential may materialize in a form of test-time 
compute in sequence modelling tasks34,35 or inference of generative 
diffusion models.

In practice, model sizes tend to exceed what a given hardware can 
support, including traditional GPUs. To address this, we demonstrate 
time-multiplexing on the AOC by training a 4,096-weight ensemble 
equilibrium model, composed of 16 independent 256-weight equilib-
rium models. The overall architecture mirrors the previous 256-weight 
model, but the middle layer now consists of 16 independent equilibrium 
models, executed sequentially on the AOC for each slice of the input 

Rx ∈proj
4096. Classification accuracies for these time-multiplexed mod-

els are shown in Fig. 2d. The time-to-solution increases linearly with 
the number of independent blocks in the ensemble. Across all archi-
tectures considered for classification tasks, the IP layer accounts for 
the majority of parameters, whereas nonlinearities within the AOC 
primarily drive performance differences compared with a linear clas-
sifier. Additional classification results, including ablation studies of 
the optical and electronic contributions with untrained IP layers, are 
provided in Supplementary Information section C.1.

Across all classification and regression tasks, the AOC-DT requires 
around nine iterations per input to reach convergence. On the AOC 
hardware, these fixed points can be achieved in 180 ns and, ideally, their 
sampling would occur immediately afterwards. In practice, to ensure the 
state stability and mitigate noise, we sample over a fixed 6.4-μs window 
at 6.25-MHz frequency (Extended Data Fig. 5). As the sampling rate is 
about eight-times slower than the hardware round-trip time, individual 
iterations cannot be resolved on the AOC. Compared with classification 
tasks, the regression tasks show greater sensitivity to noise, requiring 
up to 11 repeated runs for averaging to obtain smooth curves (Supple-
mentary Fig. 6). We note that owing to the iterative process, the training 
and inference times of the AOC-DT running in silico are approximately 
nine-times slower than an equivalent feedforward model.

Noise robustness
Equilibrium models, beyond being compute heavy, are also suitable 
for analog acceleration owing to the attractor nature of their iterative 

inference process. This provides enhanced robustness to analog noise 
compared with deep feedforward networks, which is a critical property 
for the AOC performance at scale (Extended Data Fig. 6b).

AOC for optimization
Quadratic unconstrained mixed optimization
The QUMO formulation represents a wide class of combinatorial opti-
mization problems aimed at minimizing the objective function 
F W( ) = − −1

2
T Tx x x b x, where the vector x includes binary and continu-

ous variables, and the information about the optimization problem is 
encoded in the weight matrix W and the constant vector b. Without 
loss of generality, one may consider the values {0, 1} for binary and the 
interval [0, 1] for continuous variables. These variables are represented 
through the element-wise nonlinearity over the system state vector st 
in equation (1). The solution to the QUMO problem is the assignment 
of the variables x that minimizes the objective F(x). If the components 
of x are all binary variables, the problem reduces to the quadratic 
unconstrained binary optimization (QUBO) formulation. We note that 
the QUBO problem is equivalent to the well-known problems of mini-
mizing the Hamiltonian of the Ising model37 and finding the maximum 
cut of a weighted graph38.

Besides being nonlinear, most optimization problems are con-
strained. A problem with linear inequality constraints highlights the 
greater expressiveness of the QUMO over the standard QUBO formu-
lation, commonly used across many non-traditional platforms. For 
example, only one additional continuous variable, typically referred 
to as slack variable, is required for mapping one inequality constraint 
to the QUMO problem with a penalty method. In contrast, the QUBO 
formulation suffers from a large mapping overhead: 10 to 100 binary 
variables are needed to represent a single constraint with either 
binary or unary encoding (Supplementary Information section G.8). 
We next demonstrate solving QUMO problems on the AOC hardware 
for two applications: medical image reconstruction and transaction 
settlement.

Medical image reconstruction case study
We implement compressed sensing on the AOC hardware, a technique 
enabling accurate signal reconstruction from fewer measurements 
than traditionally required39,40. Compressed sensing accelerates image 
acquisition, reducing scan times and enhancing patient comfort. For 
magnetic resonance imaging (MRI), a sparse image representation is 
typically achieved using techniques such as wavelet regularization 
that penalize ‘unnatural’ reconstructions. The standard regularization 
choice is the ℓ1-norm, which promotes sparsity and enables optimization 
via convex solvers. However, the original compressed-sensing method 
employs the ‘ℓ0-norm’, which counts the number of non-zero elements 
in a vector. Minimizing the ℓ0-norm may yield better reconstruction 
in theory41,42, although the optimization problem is deemed imprac-
tical in this case and, hence, remains largely unexplored in applied 
image reconstruction tasks. With the AOC hardware, we can address 

DNN + recurrence
s0

X X

s* W WW s*

Recurrence

Ws0 s*s0

Fig. 3 | Multilayer neural networks with recurrence on the AOC. The left 
panel shows a multilayer deep neural network (DNN) with recurrence, where 
orange, green and blue denote different layers. Here, s0 is the initial network 
state, x is the network input and s* represents the fixed point to which the 
network converges. This network structure can be realized on the AOC hardware 
by arranging the layers along the lower subdiagonal of a larger matrix W, placing 

the final layer as a recurrent block in the top-right corner, with its time evolution 
shown in the middle panel. The right panel further represents this architecture 
through a single block iterated over time, capturing the recurrent multilayered 
model structure. All three panels depict equivalent representations of the 
recurrent multilayer network.
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this original hard problem by formulating the compressed-sensing 
approach as the QUMO optimization problem:

λ λmin
1
2

− + + ( − ) . (3)2
2

1
T

2
Ty Ax 1 σ 1 σ x

x

Here the first term ensures data fidelity between measurements 
Ry ∈ M  and the image Rx ∈ N  in the wavelet domain, and the matrix 

∈ M N×A R  represents the MRI acquisition process consisting of Fourier 
and inverse wavelet transforms with an undersampling mask (Meth-
ods). To reduce the MRI scan time, the number of measurements M 
needs to be smaller than the number of pixels N; hence this data-fidelity 
term has infinitely many solutions on its own. The image pixels are 
normalized to x ∈ [0, 1]N in the wavelet domain and σ ∈ {0, 1}N is a binary 
vector that controls the sparsity of x. When σi = 0, the λ1 penalty disap-
pears and the corresponding non-zero pixel value xi penalizes the objec-
tive owing to the λ2 penalty. For σi = 1, the λ2 penalty disappears and the 
pixel xi can take any value to match the measurements, albeit at λ1 
penalty cost to the objective. Lastly, 1 and (⋅)T denote the vector of ones 
and the transpose operation in equation (3), respectively. The gener-
alization of this reconstruction problem to the complex-valued vari-
ables is presented in Supplementary Information section G.3.

We realize the compressed-sensing approach on the AOC hard-
ware for a line of the Shepp–Logan phantom image of 32 × 32 pixels 
(Fig. 4a and Supplementary Fig. 10), formulated as a 64-variable 9-bit 
QUMO problem with equal split between binary and continuous vari-
ables. As an example of a realistic MRI process, we omit 37.5% of the 
measurements. By minimizing the data-fidelity term only, we obtain 
a poor reconstruction (Fig. 4a), highlighting the importance of the 
interactions between continuous and binary variables in the QUMO 
formulation.

For the non-zero λ1 and λ2 penalties, we split the 64-variable QUMO 
problem into smaller subproblems and solve them all in the AOC 
hardware using the block coordinate descent (BCD) method43. Solu-
tions to each subproblem, corresponding to one step of BCD, are 
used to create the subsequent ones, all of which are solved using the 
fixed-point abstraction realized on the AOC hardware. The conver-
gence to the optimal solution takes around 30 –40 BCD steps with 
1,000–1,500 AOC iterations per BCD step. The final image reconstruc-
tion closely matches the original line, as shown in Fig. 4a. We note that 
all QUMO instances are solved in an entirely analog manner without 
any digital post-processing.

To validate the QUMO formulation for compressed sensing at scale, 
we use the AOC-DT to reconstruct a brain scan image of 320 × 320 pixels 
from the FastMRI dataset44, which results in the QUMO problem with 
more than 200,000 variables. For the typical undersampling rates of 
4 and 8, we achieve reconstructions with mean squared error (MSE) 
below 0.07 (Fig. 4a).

Transaction settlement problem case study
For optimization in the financial domain, we use the AOC hard-
ware to solve a transaction-settlement problem. Each securities 
transaction is an exchange of securities for a payment, known as a 
delivery-versus-payment transaction. Clearing houses process batches 
of such transactions; for example, the subsidiaries of the Depository 
Trust and Clearing Corporation (DTCC) processed securities trans-
actions valued at US$3 quadrillion in 202345. Within each batch, the 
transaction-settlement objective is to maximize the total number or 
total value of settled transactions, which is NP-hard46. This is a diffi-
cult optimization problem given the volume of transactions, legal 
constraints and additional requirements (for example, collateral and 
credit facilities).

A prevalent approach for solving the transaction-settlement problem 
is to formulate it as a linear optimization problem with binary variables 
and linear inequality constraints46. This formulation can be mapped 

to a QUMO problem, where the inequality constraints are efficiently 
incorporated into the objective function by introducing continuous 
slack variables (Supplementary Information section G.8).

We design a transaction-settlement instance generator that produces 
industrially relevant transaction-settlement scenarios for the given num-
bers of transactions, financial parties and assets. We also implement a 
pre-processing technique to eliminate trivial constraints. As an example, 
we generate a scenario with 46 transactions between 37 parties (Fig. 4b), 
resulting in 30 constraints, which is reduced to an effective 41-variable 
QUMO instance. As shown in Fig. 4b, the AOC hardware finds the glob-
ally optimal solution in seven BCD steps for this transaction-settlement 
scenario. Similar to reconstruction of the Shepp–Logan image, the 
QUMO instances across all transaction-settlement scenarios are solved 
in an entirely analog manner.

In addition, we evaluate several smaller-size scenarios derived from 
real settlement data47. After pre-processing, these reduce to QUMO 
instances of 8 variables, on which the AOC hardware achieves a 100% 
success rate (see Supplementary Table 8). In contrast, quantum hard-
ware performance on the same problems yields success rates of 40–60% 
(ref. 47).

Comprehensive benchmarking
For the AOC hardware, a comprehensive evaluation is conducted on a 
diverse set of challenging synthetic QUMO and QUBO problems. The 
optimization problems include instances with 16 binary and continu-
ous variables, with dense and sparse weight matrices up to 8-bit preci-
sion. For 100 instances, the AOC hardware achieves over 95% and 100% 
proximity to the optimal objectives of QUMO and QUBO instances, 
respectively, under 1,000 samples (Fig. 4c). The typical time trace of 
16 variables during the optimization process on the AOC hardware is 
shown in Fig. 4d.

Using the AOC-DT, algorithmic performance is validated on the hard-
est quadratic binary problems with linear inequality constraints from 
the quadratic programming library (QPLIB) benchmark23, formulated as 
QUMO instances. The AOC approach is compared with the commercial 
Gurobi solver22, which requires over a minute to reach the best-known 
solutions for these problems. Figure 4e,f shows that the AOC-DT is up 
to three orders of magnitude faster in all instances, except for two, one 
of which it is unable to solve. Moreover, the AOC solver discovers the 
new best solutions for two heavily constrained instances (3,584 and 
3,860), each with over 500 binary and 10,000 continuous variables in 
the QUMO formulation, in about 40 s. For instance, for 3,584, Gurobi 
matches the AOC solution in about 54,000 s, whereas proving its global 
optimality takes 4.5 days. The details of the AOC-DT parameters are 
provided in Supplementary Information section G.4 with additional 
benchmarks in Supplementary Information section G.5.

Discussion
Addressing practical applications with the AOC necessitates hardware 
scalability from hundreds of millions to billions of weights. For exam-
ple, typical MRI scans with resolutions around 100,000 pixels require 
systems capable of processing around 20,000 variables when using 
decomposition techniques such as BCD, which is equivalent to handling 
around 400 million weights. Similarly, deep learning models with a few 
billion weights are standard for real-world applications48, which, with 
mixture of experts models or techniques such as ensembling, could be 
reduced to many parallel models that are an order of magnitude smaller. 
The AOC hardware has the potential to scale to these requirements 
through a modular architecture that decomposes the core optical 
matrix–vector multiplication operation into multiplication of smaller 
subvectors and submatrices.

At scale, the AOC hardware will consist of multiple modules, each 
performing a part of the full-weight matrix multiplication. Each mod-
ule will include a microLED array, a photodetector array and an SLM. 
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With current SLMs supporting 4 million pixels, matrices with up to 
4 million weights could be realized. When combined with integrated 
driving electronics, this results in a miniaturized module with dimen-
sions of around 4 cm. Utilizing the third dimension for matrix–vector 
multiplication thus enables scalable in-memory computing. In contrast, 
emerging planar optical computers1,2 are constrained by the reticle-size 
limit of the chip area that is used for both routing and computing, which 
limits the matrix size28. Furthermore, as microLEDs are incoherent 
light sources, optical paths need to be matched only within the system 
bandwidth (gigahertz) rather than the source wavelength (hundreds of 
terahertz), which is a fundamental manufacturability advantage over 
coherent systems. Achieving the required miniaturization, however, 
is both a challenge and an opportunity to drive advancements in 3D 
optical technologies with broader applications. The miniaturized opti-
cal modules are coupled with integrated analog electronic models in a 
3D mesh (Extended Data Fig. 4). These modules further aggregate the 
output vectors from the optical modules and perform the remaining 
compute primitives.

We envision that the AOC can support models with 0.1 billion to 2 bil-
lion weights, requiring 50 to 1,000 optical modules. The module count 
can be halved if a single optical module supports both positive and 
negative weights13. All AOC components, including microLEDs, photo-
detectors, SLMs and analog electronics, have an existing and growing 
manufacturing ecosystem with wafer-scale production. At the same 
time, complementing optics with analog electronics offers numerous 
opportunities to expand the compute primitives, including nonlineari-
ties, the hardware can support, thereby enhancing its expressiveness.

The operational speed and power consumption of the AOC dic-
tate its energy efficiency. The speed is limited by the bandwidth of 
the opto-electronic components, typically 2 GHz or higher49. For a 
100-million-weight matrix with 25 AOC modules, the power consumption 
is estimated to be 800 W, resulting in a computing speed of 400 peta-OPS 
and an efficiency of 500 TOPS W−1 (2 fJ per operation) at 8-bit weight 
precision (Supplementary Information section A.1). In contrast, the 
latest GPUs achieve a system efficiency of up to 4.5 TOPS W−1 at the same 
precision for dense matrices24.
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Fig. 4 | The AOC for optimization. a, Medical image reconstruction. Top: the 
AOC hardware realizes a compressed-sensing algorithm with the ‘ℓ0-norm’ to 
reconstruct a line of the Shepp–Logan phantom image. The reconstruction 
process is formulated as optimization of the 64-variable QUMO instance and 
compared with the minimization of the data-fidelity term only in equation  
(3), achieving an MSE of 0.008 in the former and 0.079 in the latter cases.  
The greyscale bar denotes brightness values in the image, with 0 corresponding 
to black and 1 to white. Bottom: reconstructions by the AOC-DT for a real brain 
image from the FastMRI dataset at typical acceleration rates. b, Transaction 
settlement. Top: a schematic of the transaction-settlement process among 
multiple financial parties, with settled (green) and unsettled (red) transactions. 
Bottom: the number of settled transactions achieved by the AOC hardware for  
a 41-variable QUMO instance as a function of block coordinate descent steps.  

c, The AOC hardware solves synthetic 3-bit to 8-bit precision QUMO and QUBO 
instances with 16 variables, requiring fewer than 1,000 samples to reach at  
least ≥95% and 100% objective proximities for the QUMO and QUBO instances, 
respectively. The shaded regions indicate the 50% confidence interval. d, The 
time trace of 16 variables during the optimization process on the AOC hardware 
for a QUMO instance. The system converges to the fixed point within 30 μs, with 
the sampling window occurring over the last 6 μs. e, The relative speed-up of the 
AOC-DT compared with the Gurobi solver is shown for a QUMO-reformulated 
subset of QPLIB benchmark instances (QBL). The state-of-the-art solutions are 
found for instances 3,860 and 3,584. f, The hardest QBL instances require more 
than 60 s for the Gurobi solver to find the best-known solutions of 10 QBL 
instances in their original formulation.
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In conclusion, the AOC architecture shows promise for scaling to 

practical ML and optimization tasks, offering a potential 100-fold 
improvement in power efficiency. The current AOC hardware uses a 
rapid fixed-point search to power inference tasks, such as regression 
and classification, using equilibrium models with promising reasoning 
capabilities, and to successfully solve QUMO problems including medi-
cal image reconstruction and transaction settlement. Cross-validation 
with the digital twin, coupled with evaluation on large problems, offers 
confidence in the hardware’s performance as it scales. Looking ahead, 
the AOC’s co-design approach—aligning the hardware with the ML and 
optimization algorithms—could spur a flywheel of future innovations in 
hardware and algorithms, pivotal for a sustainable future of computing.
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Methods

Experimental set-up
The key components of our experimental set-up are shown in Fig. 1a 
and Extended Data Fig. 1.

Optical subsystem. The optical subsystem performs matrix–vector 
multiplication. The basic components are the optical sources (input 
vector), a system of fan-out optics to project the light onto the modu-
lator matrix and a system of fan-in optics to project the light onto a 
photodetector array (output vector). The corresponding schematic 
is shown in Extended Data Fig. 2.

The incoherent light sources are an array of 16 independently 
addressable microLEDs. Each microLED is driven with a bias current 
and an offset voltage. The variable value is encoded by the light inten-
sity, with a value of zero corresponding to the microLED bias point. 
Mathematical positive values are represented by microLED drive cur-
rents greater than the bias value. Negative values are represented by 
drive currents less than the bias value. The diameter of each emitter 
is 50 μm and the pitch is 75 μm. The sources are fabricated in gallium 
nitride wafers on a sapphire substrate and the die is wire-bonded onto 
a printed circuit board (Fig. 1c). The emission spectrum is centred at 
520 nm with a full-width of half-maximum of 35 nm and the operational 
−3-dB bandwidth is 200 MHz at 20 mA, see Supplementary Fig. 1.

After the sources, there is a polarizing beamsplitter (PBS). From 
this point, there are two equivalent optical paths in this set-up. Each 
path performs two functions: first, they allow us to use both polari-
zations of the unpolarized light output; second, they allow us to 
perform non-negative and non-positive multiplications with only 
intensity modulation. Each path contains one amplitude modula-
tor matrix and one photodetector array. The modulator matrix is a 
reflective parallel-aligned nematic liquid-crystal SLM. We refer to the 
first part of the optical system as the fan-out system. The task of this 
fan-out system is to image the microLEDs onto the SLM, where the 
weights are displayed, and to spread the light horizontally into lines. 
The microLEDs are arranged in a one-dimensional line (let this be the 
y axis) and are imaged onto the SLM using a 4F system composed of 
a high-numerical-aperture (Thorlabs TL10X-2P, numerical aperture 
0.5, ×10 magnification, 22-mm field number) collection objective and 
a lower-numerical-aperture lens group composed of 2 achromatic 
doublets with combined focal length 77 mm. There is a cylindrical lens, 
Thorlabs LJ1558L1, in infinity space of this 4F system. This lens adds 
defocus to the image of the source array on the SLM but only in the x 
direction, so that the projected light pattern is a set of long horizontal 
lines, one per microLED. Each matrix element occupies a patch of 12 
(height) × 10 (width) pixels of the modulator array. An 8-bit look-up 
table is used to linearize the SLM response as a function of grey level.

The SLM is imaged onto the photodetector array using a 4F system 
(the fan-in system). The first lens group of the fan-in is the same as 
the second lens group of the fan-out system as this is in double pass. 
From here, the light is directed towards the intended photodetector 
array through a second PBS. The light from each column of the SLM 
is collected by an array of 16 silicon photodetectors to perform the 
required summation operation. The active area of each element is 
3.6 × 0.075 mm2. The photodetectors are on a pitch of 0.125 mm. The 
operation bandwidth is 490 MHz at −10 V measured at 600 nm.

Analog electronic subsystem. After the photodetector array, the 
signals are in the analog electronic domain. The photocurrents from 
each photodetector element are amplified by a linear trans-impedance 
amplifier (Analog Devices MAX4066). Each trans-impedance ampli-
fier provides 25-kΩ gain and is characterized by an input referred noise 
of 3 pA Hz  and has differential outputs. The corresponding 2 sets (1 
per photodetector board) of 16 differential pairs of signals are fed to 
the main boards where the per-channel nonlinear operation and other 

analog electronic processing is carried out. Each of the 16 signals sees 
the following circuitry: (1) a variable gain amplifier (VGA; Texas Instru-
ments VCA824) to allow the input signal range to be set and equalized 
across channels; (2) a difference amplifier to perform the operation of 
subtracting the negative input signal from the positive one and achieve 
signed voltages (signed multiplications); (3) a VGA that adds and sub-
tracts signals from the described path, referred to as gradient term, to 
the annealing and momentum terms, as per equation (1), while provid-
ing a common gain control to all these paths; (4) an electronic switch 
(ADG659) to open and close the loop to set and reset the solving state; 
(5) a buffer amplifier to distribute the signal to the gradient, annealing 
and momentum paths; (6) a bipolar differential pair to implement the 
tanh nonlinearity; (7) a VGA to adjust the signal level between the non-
linearity and the required voltage and current onto the microLED 
alternating-current input circuit. Both the annealing and momentum 
paths have VGAs with a common external control so that we can imple-
ment time-varying annealing and momentum schedules.

Each channel also has an offset to the common control signal added 
to allow minor adjustment or correction of channel-to-channel vari-
ations. The other VGAs are set with digital-to-analog converters con-
trolled over an inter-integrated circuit (I2C) bus. This allows slower 
control at per-experiment timescales.

Nonlinearity. The per-channel nonlinear function is an approxima-
tion to a tanh. This is shown in Supplementary Fig. 5d. The system is 
designed so that all signals follow the same path through the solver. For 
ML workloads, the input domain of the tanh function is unrestricted 
by hardware; there are no gain variations across channels. The trained 
weights and equilibrium model input ensure that signals evolve accu-
rately. For optimization workloads, binary and continuous variables 
require different handling in hardware. Here we set the gain after the 
trans-impedance amplifier and before the tanh nonlinearity to be lower 
for continuous variables than for binary variables. This adjustment en-
sures that the input domain of the nonlinearity results in a more linear 
output for continuous variables than for binary variables.

Evaluation of matrix–vector multiplication accuracy. We character-
ized and calibrated the key opto-electronic and electronic components 
to equalize the gain of each AOC path. For example, we calibrate the 
optical paths by applying a set of 93 reference matrices and for each 
we digitally compute the result of the vector–matrix product. We then 
adjust the gain per channel slightly so that, averaged over the set of 93 
computed vectors, the AOC result is as close as possible to the digital 
result.

Following this, the accuracy of the matrix–vector multiplication is 
characterized using the same 93 reference matrices on each SLM and 
measuring the output of the system, shown in Supplementary Fig. 3a. 
For each reference matrix in the set, we calculate the MSE between the 
known and the measured output. The mean MSE across all dot products 
is 5.5 × 10−3, and the matrix–vector multiplication MSE as a function of 
matrix (instance) is shown in Supplementary Fig. 3b. For these experi-
ments, we configure the system in open-loop mode without feedback 
and turn off the annealing and momentum paths.

ML methods
Training and digital twin. In commercial deployments, training con-
sumes less than 10% of the energy and, hence, is not targeted by the 
AOC. The equilibrium models are trained through our digital twin, 
which is based on equation (2). In the digital domain during training, the 
convergence criterion is set to ∣∣st+1 − st∣∣ < ε, with ε = 10−3. The AOC-DT 
models up to seven non-idealities measured on the AOC device; each 
non-ideality can be switched on and off (Supplementary Fig. 5). The 
AOC-DT is implemented as a Pytorch module with the weight matrix 
W and bias terms b, as well as the gain β as trainable parameters. The 
weight matrix is normalized to fulfil ∥W∥∞ = 1 throughout training to 
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simulate the passive SLM. The numeric scale of the matrix is instead 
modelled by the gain β. This separation of scale is necessary as several 
nonlinear non-idealities occur between the matrix multiplication and 
the gain in equation (2), as discussed in Supplementary Information 
section D.

The weight matrix is initialized with the default Pytorch initialization 
for a 16 × 16 matrix, the bias term is initialized to 0 and β is initialized at 
1. We trained all models with a batch size of B = 8, at a learning rate of 
η = 3 × 10−4 for MNIST and Fashion-MNIST and η = 7 × 10−4 for regression 
tasks. We used the Adam optimizer50. In all cases, models are trained 
end-to-end, with the equilibrium-section trained through our AOC-DT 
using the implicit gradient method17, which avoids storing activations 
for the fixed-point iterations. This decouples memory cost from itera-
tion depth as intermediate activations do not need to be stored. In all 
experiments, the α gain in equation (2) is set to 0.5 to strike a balance 
between overall signal amplitude and speed of convergence. Low α 
values cause the signal to be too weak, resulting in a low signal-to-noise 
ratio (Supplementary Information section D).

Inference and export to the AOC. Once training has completed, the 
weight matrix W is quantized to signed 9-bit integers using
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with the rounded and clamped matrix on the right-hand side being the 
quantized weight matrix WQ. Whenever we report AOC-DT results, we 
report results obtained with the quantized matrix.

Exporting trained models to the AOC requires several further steps. 
First, the model inputs x and the bias term b need to be condensed into 
a single vector bAOC = b + x followed by clamp to ensure the values fit 
into the dynamic range of the AOC device (Supplementary Information 
section D). Second, as the optical matrix multiplication is implemented 
using SLMs, elements of the weight matrix are bounded by one such 
that all quantization-related factors disappear. However, the original 
maximum element of the matrix max(W) needs to be re-injected, which 
we achieve via the β gain in equation (2), approximately restoring the 
original matrix W.

The quantized matrix is split into positive and negative parts, 
W W W= −Q Q

+
Q
−, and each part is displayed on its respective SLM.

AOC sampling and workflow. Each classification instance (that is, 
MNIST or Fashion-MNIST test image) is run once on the AOC, and the 
fixed point is sampled at the point marked in Extended Data Fig. 3 after 
a short 2.5-μs cooldown window after the switch is closed, as shown in 
Extended Data Fig. 5a,b. The sampling window extends over 40 samples 
at 6.25 MHz, corresponding to 6.4 μs. This ensures that the search of 
fixed points for the equilibrium models happens entirely in the analog 
domain. Once sampled, we digitally project the vector into the output 
space. For classification, the input is projected from 784 to 16 dimen-
sions, the output is projected from 16 to 10 classes. The label is then 
determined by the index of the largest element in the output vector 
(argument-max). For regression tasks, the IP and OP layers transform a 
scalar to 16 dimensions and back, respectively. The MSE results in Fig. 2c 
were obtained by averaging over 11 repeats for each input. This means 
that we restart the solution process 11 times, including the sampling 
window, and average the resulting latent fixed-point vectors. Impor-
tantly, the solve-to-solve variability appears to be centred close to the 
curve produced by the AOC-DT, enabling us to average this variability 
out (Supplementary Fig. 6).

The 4,096-weight ensemble model. We can expand the model sizes 
supported by the hardware by using an ensemble of small models that 

fit on it. These smaller 256-weight models are independent at infer-
ence time but are trained jointly by receiving slices 16-sized slices 
of a larger input vector and stacking their outputs before the OP. 
To scale to a 4,096-weight equilibrium model, we expand the input 
space from 16 to 16 × 16 = 4,096 dimensions and the output space 
from 10 to 10 × 16 = 160 dimensions. The IP matrix is consequently a 
784 × 4,096-shaped matrix and the OP matrix is shaped 160 × 10. MNIST 
or Fashion-MNIST images are scaled to the range [−1, 1] and, projected 
to 4,096 dimensions and split into 16 slices of 16 dimensions. Each of 
the 16 equilibrium models then runs its respective slice of input vectors 
to a fixed-point. Once all 16 models are run on the AOC, we concatenate 
outputs and project them into the 10-dimensional output space where 
the largest dimension determines the predicted cipher.

Nonlinear regression. The first curve (I) is a Gaussian rescaled such 
that the Gaussian curve approximately stretches from −1 to 1, 
f x( ) = 2e − 1x σ
I

− /22 2
 for σ = 0.25 and x ∈ [−1, 1]. The second curve (II) is 

given by f x x x( ) = sin(3π )II . For training sets, we choose 10,000  
equidistant points xi in the range [−1, 1] whereas for test regression 
datasets, we choose 200 points randomly xi ≈ U([−1, 1]).

Error estimation. For regression tasks, we concatenate the 40 samples 
from all 11 repeats and calculate the standard deviation per point on 
the curve.

Classification datasets. We trained the MNIST and Fashion-MNIST 
models on 48,000 images from their respective training set, validated 
on a set of 12,000 images and tested them on the full test set compris-
ing 10,000 images.

Error estimation. For experimental results, the error bars in Fig. 2d 
were estimated using a Bayesian approach for the decision variable 
ct ∈ {0, 1, …, 9} for each sample t along the sampling window per  
image. We assume an uninformative prior p(ct) = beta(1, 1),  
which we then update with the observed number of correct decisions 
nsuccess and failures nfailure over the sampling window. The variance  
of the conjugate posterior of a beta distribution is given by 

∣c n nVar( , ) =t
n n

n n n nsuccess failure
(1 + )(1 + )

(2 + + ) (3 + + )

success failure

success failure
2

success failure
. We use this 

to estimate the variance and, by taking the square root, the standard 
deviation per input image. The dataset error bars are then estimated 
as the mean of the standard deviations over all members of the dataset.

Optimization methods
Positive and negative problem weights. To address optimization 
problems involving positive and negative weights on the AOC hard-
ware, QUMO instances without linear terms can have up to eight vari-
ables, which applies to both transaction-settlement scenarios and 
reconstruction of one-dimensional line of the Shepp–Logan phantom  
image. The weight matrices are unsigned in synthetic QUMO and QUBO 
hardware benchmarks; hence the AOC hardware can accommodate up 
to 16-variable instances in the absence of linear terms. Such instance 
size difference arises because, when both positive and negative weights 
are present, non-idealities in the dual-SLM configuration reduce the 
accuracy of matrix–vector multiplication. To mitigate this, a single 
SLM is used to process both positive and negative weights, effectively 
halving the number of variables per instance.

Industrial optimization problems. For the transaction-settlement sce-
nario and the Shepp–Logan phantom image slice, their 41-variable and 
64-variable QUMO instances are decomposed into smaller 7-variable 
QUMO instances. For each of these subinstances, the 7 variables are con-
nected with the rest of the variables via a linear vector b, which is incor-
porated into the quadratic matrix W via an additional binary variable. 
This decomposition is repeated for each subinstance and the linear 



vector b is updated at the end of each BCD iteration to create the next 
QUMO instance. Such an approach yields 8-variable QUMO instances 
and a single SLM is used to represent their positive and negative matrix 
elements, with analog electronics handling their subtraction, which 
effectively utilizes the full 16-variable capacity available in hardware. 
The required number of BCD iterations varies depending on factors 
such as the initial random state of the optimization instance variables, 
the selection of variable blocks among subinstances, and the order in 
which they are optimized.

For the one-dimensional Shepp–Logan phantom image, 12 out of 
32 measurements are omitted, corresponding to a 37.5% data loss or 
a 1.6 undersampling (acceleration) rate. Although typical MRI accel-
eration ranges from 2 to 8, this rate is used here owing to the image’s 
non-smoothness at a 32-pixel resolution.

Binary and continuous variables. In the AOC, binary variables are 
encoded using a hyperbolic tangent function, whereas continuous 
variables utilize the near-linear region of the function, connecting 
optimization variables to state variables via x = f(s). In simulations at 
scale with the AOC-DT, linear and sign functions are used for continu-
ous and binary variables, respectively.

Hardware QUMO instances. To ensure that some variables take indeed 
continuous values in the global optimal solution, we plant random con-
tinuous values and generate synthetic 16-variable QUMO instances. As 
the number of continuous variables increases for a given problem size, 
the problem instances become computationally easier to solve. Conse-
quently, we consider instances with up to eight continuous variables.

Hardware QUBO instances. We generate up to 8-bit dense and sparse 
instances. The sparse instances belong to the QUBO model on three- 
regular graphs that are NP-hard51, although NP-hardness does not 
imply that every random instance is difficult to solve. To make these 
instances more challenging to solve, we verify that their global objec-
tive minimizer is distinct from the signs of the principal eigenvector 
of the weight matrix52.

QPLIB benchmark. The QPLIB is a library of quadratic programming 
instances23 collected over almost a year-long open call from various  
communities, with the selected instances being challenging for state- 
of-the-art solvers. As described in the main part of the paper, we con-
sider only the hardest instances within the QPLIB:QBL class of problems, 
which contains instances with quadratic objective and linear inequality 
constraints. The QPLIB:QCBO class of problems, which contains  
instances with quadratic objective and linear equality constraints, and 
the QPLIB:QBN class of problems, which contains QUBO instances, are 
considered in Supplementary Information section G.5.

AOC-DT operation and parameters. The distinction of the AOC-DT 
algorithm is the simultaneous inclusion of both momentum and  
annealing terms, which markedly improves the performance of the 
standard steepest gradient-descent method on non-convex optimiza-
tion problems. Typically, multiple hyperparameters need to be cali-
brated for heuristic methods to achieve their best performance in 
solving optimization problems. We consider α t α t( ) = 1− ( )̂ , where ̂α t( ) 
is a linearly decreasing function from some initial value α0 to 0 over 
time. From the hardware perspective, such an annealing schedule pro-
vides an explicit stopping criteria, which is an advantage for an 
all-analog hardware implementation as it avoids the complexity of 
multiple intermediate readouts that stochastic heuristic approaches 
suffer from53. In principle, the three main parameters {α0, β, γ} of the 
AOC fixed-point update rule need to be adjusted for each optimization 
instance. In our simulations, we notice that the algorithm is less sensi-
tive to the momentum parameter value, whereas the α0 and β values 
substantially affect the solution quality. We further perform a linear 

stability analysis of the algorithm to evaluate reasonable exploration 
regions for these two parameters and find that by scaling the β param-
eter as β = β0/λlargest, where λlargest is the largest eigenvalue of the weight 
matrix W, we get scaled parameters β0 and α0 being in a similar optimal 
unit range across a wide range of problems.

We design a two-phase approach for the AOC-DT to operate similar 
to a black-box solver that can quickly adjust the critical parameters 
within the given time limit. During the ‘exploration’ phase, we evaluate 
the relative algorithm performance across a vast range of parameters 
(α0, β0). A subset of ‘good’ parameters is then passed for more extensive 
investigation in the ‘deep search’ phase (Supplementary Information 
section G.1).

We note that for two QPLIB:QUMO instances, namely, 5,935 and 5,962, 
we developed a pre-processing technique that greedily picks variables 
with the highest impact on the objective functions and considers their 
possible values, which is accounted in the reported time speed-up of 
the AOC-DT.

Competing solvers. For a fair comparison, we ensure that all methods 
use similar computing resources. Although the implementation of 
GPU- or central-processing-unit-based solvers can require highly vary-
ing engineering efforts, we try to estimate the cost of running solvers 
on the hardware, on which they are designed to run, and vary the time 
limit across solvers accordingly to ensure similar cost per solver run. In 
what follows, the Julia-based AOC-DT runs on a GV100 GPU for 5–300 s 
per instance across all benchmarks. In the case of Gurobi, our licence 
allows us to use only up to eight cores, and its time to achieve the best 
solution for the first time is used (not the time to prove its optimality).

More details about the AOC hardware and the AOC-DT performance 
on different optimization instances are provided in Supplementary 
Information section G.5.

Data availability
All data supporting the findings of this study are available in source 
data provided with the paper and via Zenodo at https://doi.org/10.5281/
zenodo.15088326 (ref. 54). Source data are provided with this paper.

Code availability
Code for the AOC digital twin supporting optimization and machine 
learning models will be released upon publication at https://micro-
soft.github.io/AOCoptimizer.jl and https://github.com/microsoft/
aoc (under MIT license).
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Extended Data Fig. 1 | Experimental layout of AOC. a, Photo of AOC, used to 
simultaneous run ML models and solve optimization instances. Key highlighted 
components are: the microLED array, the SLMs, the photodetector array, and 

the analog electronic block. b, AOC photo inside a rack, with all required 
equipment included.
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Extended Data Fig. 2 | Detailed Schematic diagram of the optical vector-
matrix multiplication in AOC. Light from the sources is collected by the 
objective. The sources are imaged onto the SLM using the combined 4F system 
of the objective and lens group 1 (LG1). Polarizing beamsplitter 1 (PBS 1) splits 
the light by linear polarization state and sends light to one of two modulators. 
The reflected light is modulated by polarization (multiplication) and the action 
of PBS 1 makes this an amplitude modulation. Each SLM is imaged onto its 
corresponding detector using LG1 and LG2 through PBS 1 and PBS 2. Summation 
happens at the detector.



Extended Data Fig. 3 | Schematic diagram of AOC. Schematic diagram of the analog electronic parts (in the orange box) and the optical parts (in the green boxes), 
where the key functions and operations are highlighted. The state vector s(t) in equation (1) and equation (2) is measured at the pointed indicated as output.
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Extended Data Fig. 4 | AOC at scale. Artistic representation of AOC at 100 
million weights scale, showing the 3D mesh structure of the required 50 
modules, with each module with size of 4 × 106 weights (2000 variables) and 
distinct optical modules for positive and negative weights.



Extended Data Fig. 5 | Traces and Multi-Seed-DT-AOC comparison.  
a, Example trace of an MNIST example. We selected four time points of the 
trace where we projected the measured state into classification space using the 
output projection and applied a softmax to obtain probabilities. The most likely 
class stays on the wrong label 7 until the fully-sampled result is evaluated in 
which the correct class label 9 is reached. b, Example trace of a Fashion MNIST 
example. Here, the initial entropy of the class-probability distribution is high 
but drastically falls off over iterations. The correct class with label 2 emerges 
early on and is maintained throughout the iterations and in the sampled result. 

c, Example traces of a sinusoidal regression task for x = − 0.55. While the trace 
sampled during evolution averages multiple iterations and is asynchronously 
sampled, we can observe some correspondence between the evolution of the 
AOC-DT for the same point. The plot on the right shows the evolution of the 
entire curve over AOC-DT iterations. The point of interest is marked by the 
vertical dashed line and appears to follow the same trajectory from close to −1  
to its target value. d, Multi-seed study of the Gaussian regression task for 100 
independently trained and tested equilibrium models to test how reliable the 
AOC-DT models the AOC device.
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Extended Data Fig. 6 | Increased out-of-distribution generalization and equilibrium model robustness. a, Out-of-distribution generalization of the equilibrium 
model. b, Robustness of the equilibrium model to noise for feedforward models with varying number of layers and parameter-matched single-layer DEQs.
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