
Addendum to “Optimising the Linda in primitive:
Understanding tuple-space run-times" presented at

SAC’2000

Antony Rowstron
Microsoft Research
1 Guildhall Street

Cambridge, CB2 3NH, UK

antr@microsoft.com

ABSTRACT
Subsequent work on the formal proof of the optimisation de-

scribed in the paper has shown a particular case when the

optimisation allows behaviour that is not possible using the

traditional Linda semantics[2]. The case that causes this is

described, and a simpli�cation of the method is presented

which provides nearly the same degree of optimisation with-

out altering the semantics.

The original optimisation algorithm does not work when

deadlock is explicitly employed in the program (by causing

a tuple space access primitive to block (forever) a thread

of computation). Although unlikely, in an open system this

makes the optimisation unacceptable. However, the method

as presented in the paper could be used as an optimisation

run-time ag in closed implementations, such as the SCA

C-Linda[1].

The simpli�ed optimisation algorithm has no implementa-

tion impact. It can be used in open implementations and

supports optimisation of the motivating examples given in

the original paper.

1. INTRODUCTION
In order to demonstrate the problem with the current op-

timisation algorithm consider the following two agents per-

forming the operations:

Agent A Agent B

A

1

in(a) B

1

in(b)

A

2

rd(b) B

2

rd(a)

Let us assume that these two agents are accessing the same

tuple space, and that no other agents are able to access the

tuple space, and that the tuple space contains two tuples, a

and b. The case graph for these agents is shown in Figure 1.

As can be seen, there is no case where both Agent A and B

complete, either one or both block waiting for a matching

A1:in(a)

A2:rd(b)

B1:in(b)

B2:rd(a)B1:in(b) A1:in(a)

B1:in(b) A1:in(a)

B blocked

A & B blocked

A blocked

Figure 1: Case graph for agents A and B

tuple (which will never arrive). However, when the opti-

misation is being used, both agents will terminate having

performed all the operations.

The problem is that the programmer has explicitly expected

one of the agents not to terminate. In a closed system, such

as the SCA C-Linda, it is possible for a programmer to know

whether they are expecting tuple space accesses to block

forever and to switch the optimisation on accordingly. This

may seem unlikely, however, it is possible, and some years

ago, we worked on the parallel implementation of a stable

marriages algorithm that explicitly used deadlock. However,

for open systems it is not possible to know whether people

are explicitly using deadlock or not, so the method as de-

scribed in the paper is not acceptable for an open system.

However, it is possible to simplify the algorithm slightly.

2. SIMPLIFIED ALGORITHM
This optimisation algorithm presented here is a simpli�ed

version of the optimisation algorithm presented in Section 3.2

in the original paper which is the general version of the al-

gorithm covering Linda extensions. The di�erences between

the two algorithms are highlighted in italics in this version.

When a tuple is to be used as a result or part of a result for

a primitive and the tuple has been the result or part of a

result for a destructive primitive then the tuple can still be

used as a result to another primitive providing the following

are all true:

i. The primitive being performed is not destructive.



ii. The primitive is not being performed by the same agent

that performed the destructive primitive.

iii. The agent that performed the destructive primitive has

not performed any tuple space access since the destructive

primitive.

iv. The primitive being performed blocks the agents thread

of execution until a result is returned, where a result is either

a tuple or an indication of completion of some movement of

tuples

1

.

The system must subsequently discard this tuple when:

i. The agent that performed the primitive that removed the

tuple performs any operation on a tuple space.

ii. The agent that performed the primitive that removed

the tuple terminates.

iii. The current non-destructive primitive does not block the

user thread of execution until a matched tuple(s) is found

or operation on a set of tuples is complete, and is forced to

use the tuple to provide the results correctly.

This should be transparent to the programmer, and the se-

mantics of the primitives should not appear to be di�erent

from the traditional semantics of the Linda primitives.

3. DOES IT STILL REDUCE BLOCKING
OF RD PRIMITIVES?

The motivation for the work was to reduce the number of

rd primitives that have to block. In particular, when tuples

are being used as shared counters as the example in Figure 1

of the main paper demonstrates. In this case, the simpli�ed

optimisation algorithm still allows the reader agents not to

block, which is the desired behaviour. Therefore, the sim-

pli�ed optimisation algorithm still provides a performance

increase for a run-time system using it. However, with the

original algorithm, an in could be followed by an arbitrary

number of rd primitives and the tuple consumed by the in

would remain partially visible. However, we the simpli�ed

optimisation algorithm this is no longer the case.

4. IMPACT ON IMPLEMENTATION
The implementation has to be only slightly altered to sup-

port the simpli�ed optimisation algorithm, instead of just

incrementing the primitive count when an agent performs

an out operation, the counter is incremented after every tu-

ple space access operation. The overhead added to an in

and rd of incrementing the primitive counter is not notice-

able (the results shown for a out in the paper demonstrate

the cost of incrementing the primitive count is not signi�-

cant). No other extra costs are added to an in, rd or out

by using the simpli�ed algorithm. The experimental results

as presented in Table 1 in the original paper still hold.

5. REFERENCES

[1] S. C. Associates. Linda: User's guide and reference man-

ual. Scienti�c Computing Associates, 1995.

[2] R. D. Niccola. Private communication, 1999.

1

Primitives such as rdp fail this rule, because they do not

block the thread of execution { it returns false if a tuple

is not available. However, a primitive like copy-collect

passes the rule because it copies tuples and then returns a

counter.


