
Appliation-independent reoniliation for nomadi appliations

�

Mar Shapiro, Antony Rowstron and Anne-Marie Kermarre

Mirosoft Researh Ltd.

1 Guildhall St., Cambridge CB2 3NH, United Kingdom

mar.shapiro�am.org

Abstrat

We desribe attempts to build an appliation-

independent model to support reoniliation of di-

verged replias of shared objets. While replias are

disonneted from one another, ations on the shared

objets are reorded in a log. An ation is omposed

of a preondition, an operation and a postondition.

When reonneting, the system attempts to reonile

the divergent replias, in several phases. A symboli

phase merges the separate logs, reating one or more

shedules, suh that preonditions from one log re-

main true despite the postonditions introdued by

the other. Then, a simulation phase heks the pos-

sible outomes by atually applying the shedules to

srath opies of the shared objets. Finally, a sele-

tion phase allows users or appliations to selet one

of the andidate shedules.

Our approah supports sharing general objets,

where one update may referene multiple objets (not

just a single �le or database). Compared to previ-

ous work on log-based reoniliation, our logs apture

more semanti information and provide the applia-

tion with more powerful and �ner ontrol over the

outome of reoniliation.

1 Introdution

In mobile omputing there is often the need for dis-

onneted operation. The user works on a loal repli-

a of shared data; updates ause replias to diverge,

and later they must be reoniled. Cooperative ap-

pliations are partiularly a�eted beause multiple

users may simultaneously update the same data with

no mutual synhronisation.

There is no fully automati solution to reonilia-

tion, sine it depends strongly on appliation seman-

�

Appears in: Proeedings SIGOPS European Workshop:

\Beyond the PC: New Challenges for the Operating System",

Kolding (Denmark), Sept. 2000.

tis and on users' intents. However we are designing

a middleware platform to take some of the burden

away from appliations. We extend the Bayou [6℄

model of logs that store appliation-spei� informa-

tion but are reoniled aording to an appliation-

independent protool. Our model provides greater

opportunity for the appliation to express its seman-

tis and to inuene the outome of the reonilia-

tion proess. We believe this will redue the load on

the appliation programmer. Our reoniliation algo-

rithm takes into onsideration a larger set of possible

shedules, thus providing more exibility.

The management of shared data ours in several

distint phases. In the disonneted phase, the user

(through an appliation) reads and writes loal repli-

as of shared objets.

1

User ations are logged in a

log with a graph struture. A node of this graph on-

tains an operation, along with assertions desribing

its meaning. When two devies meet, they exhange

their logs (starting from a previous ommon hek-

point). A symboli phase generates a new log, om-

posing the two submitted logs under the onstraints

imposed by the assertions, of whih multiple possible

shedules an be dedued. A simulation phase om-

putes the possible outomes from this shedule, and

a seletion phase lets the appliation deide between

them. The rest of this paper fouses on the symboli

phase.

This paper proeeds as follows. Setion 2 ompares

this with previous work. Setion 3 disusses some

experiments that brought us to our urrent design,

whih is explained in detail in Setion 4. In Setion 5

an example shows the power of this new approah.

Finally Setion 6 onludes with open issues.

1

It is assumed that the loal appliation is orret, in the

sense that it takes the loal replias from a onsistent state to

another onsistent state, i.e., updates respet some integrity

onstraints.

Page 1

2 Bakground

Lotus Notes [3℄ is well-known as providing support

for ollaborative omputing while disonneted. It

detets and resolves update onits. However, it on-

ly supports a �xed set of appliations. Its resolution

poliies are hard wired; for instane, an update/delete

onit always gives priority to the delete operation.

The CVS [2℄ is a soure ode versioning tool. De-

velopers manage their own replias, and a repository

holds the master opy of eah �le. Coherene is man-

aged by developers themselves, so when they wish

to synhronise with the repository, they retrieve the

master from the repository and attempt to integrate

their modi�ations. CVS detets onits (the same

part of the �le has been updated by two di�erent user-

s) but then requires the user to solve them.

Bayou [6℄ provides an appliation-independent re-

oniliation protool for a single repliated database

supporting mobile users. Replias eventually on-

verge towards the same value. Eah write operation is

logged and timestamped. During reoniliation, the

timestamp is used to generate an order in whih the

updates are applied to the repliated databases. Bay-

ou allows an appliation to hoose within a atalogue

of oherene onstraints, alled session guarantees,

and to apply dependeny heks, alled preonditions,

at reoniliation time. A preondition is a proedure

that the appliation stores in the log. However, this

is not suÆient to apture appliation semantis.

Jrep [1℄ manages the repliation of arbitrary Java

objets for asynhronous ollaborative appliations.

Jrep is based on a log of write operations (reate,

delete, update). Multiple updates on a single objet

are oalesed into a single equivalent operation. Lam-

port loks [4℄ are used at reoniliation time to pro-

vide a ausally-onsistent merging of the logs. Con-

its on a same objet are deteted and solved a-

ording to a appliation-de�ned strategy. However,

the same strategy is applied for all shared objets of

an appliation. Inter-objet onits are deteted but

their resolution requires the assistane of the applia-

tion.

3 Experimental work

In order to understand the design spae better for

log-based reoniliation, we �rst developed a simple

prototype system. Some of the issues we wished to

evaluate were what information the log needs to ap-

ture, and what approahes to ordering the merged

logs an be used. In this setion, we outline some of

our experienes, and what impat these have had on

our urrent design.

This initial prototype uses a log similar to Bay-

ou. Eah log reord represents an update to a shared

repliated objet. A reord is omposed of a preon-

dition, an operation and a failure handler. All three

are opaque Java proedures, i.e., their semantis are

not known to the system. If the preondition evalu-

ates to true the update an be applied, otherwise it

annot be performed and the error handler is alled.

Reoniliation ombines two logs to produe a

merged log. The merged log is replayed from a om-

mon initial state of the shared objets, to yield a new

ommon state. We investigated di�erent strategies

for log merging. Initially, we investigated using well-

de�ned orderings of the logs, suh as onatenation,

or using time to order.

3.1 Ordering the logs

For a given set of updates to shared information, there

will be one or more orderings of these updates that

minimise the number of those that an not be ap-

plied. However, this ordering may not be the gener-

ated by onatenation of the logs, or the time or-

dering of the reords within logs. Let us onsid-

er an example. For instane, onsider two shared

variables x and y, and logs A fwrite(x); delete(y)g

and B fwrite(y); delete(x)g. Assuming that write

has a preondition that the shared variable exist-

s, then these two logs need to be interleaved as

fwrite(x);write(y); delete(x); delete(y)g or, some per-

mutation of this suh that the write operations

are performed before the delete operations, suh as

fwrite(x); delete(x);write(y); delete(y)g. This means

that all the updates are performed, and there is no

onit between any of them.

In ontrast, an approah that onatenates logs A

and log B would yield a log where one of the write

operations annot be performed, beause the variable

being aessed has been removed. An approah based

on real time or Lamport loks [4℄ gives unpreditable

results. Vetor loks [5℄ apture the true ausal or-

dering, but are not adapted to systems with large or

unknown numbers of replias.

We onlude that the simple approahes to ordering

the logs miss potential orderings of the log that redue

onits. However, if we allow log merging to onsider

arbitrary orderings of the reords, searhing for the

best one su�ers ombinatorial explosion. Brute-fore

algorithms are untratable.

3.2 Capturing semantis

The seond onlusion is the need to apture the ap-

pliation expetations regarding the outome of the

reoniliation phase. In the last example, a more

Page 2

satisfatory shedule might be fwrite(x);write(y)g

(omitting the deletes). The user should be able to

speify whih outome is the orret one. In order

to allow the appliation to ontrol the behaviour of

the reoniliation phase, more semanti information

is required than an be aptured with an opaque pre-

ondition.

In summary, our main onlusions are that: (i) sim-

ple orderings often fail unneessarily, (ii) the appli-

ation should be able to ontrol the outome of the

reoniliation proess, and (iii) the potential ombi-

natorial explosion needs to be ontrolled.

4 System model

The system model onsiders several phases. In the

disonneted phase appliations at a site reord their

ations in that site's log. The other phases on-

ern reonnetion and reoniliation. The symbol-

i phase ombines two logs symbolially, deteting

onstraints between separate logs, whih prune the

shedule spae. The simulation phase goes through

the possible shedules from the ombined log, om-

puting their atual outome. Finally, in the seletion

phase, the appliation (and ultimately the human us-

er) hooses among the outomes remaining from the

symboli phase: removing shedules whose results are

deemed unsatisfatory; editing the logs and resubmit-

ting them to reoniliation; or seleting one of the

outomes as de�nitive.

It is possible to speify a poliy to prioritise hoies.

It is applied during both the symboli and simulation

phase. It spei�es riteria to redue the number of

possible outomes, potentially reduing the searh s-

pae. Example poliies might be \I want shedules

whih maximise the number of reords in a log", or

\I prefer shedules that maximise the number of en-

tries made by Antony over Mar".

In what follows, we fous exlusively on the sym-

boli phase.

4.1 Shedules

Our log is a graph struture that an be traversed a-

ording to one or more shedules. A shedule is a pro-

gram for bringing the shared objets from their initial

state (nominally, at disonnetion time) to their �nal

state (nominally, just before reonnetion). Order-

ings between reords are sheduling onstraints. The

initial and �nal states are assumed orret.

In the symboli phase, the system ombines two

logs. The ombined log ontains all the reords of the

original two, onneted by omposition operators (to

be presented in Setion 4.3). Its shedules are om-

patible with the original shedules and satis�es inter-

log dependenies, as will be explained in Setion 4.4.

A shedule of the ombined log is a program that an

be exeuted (at either site) to bring the shared ob-

jets, from their ommon initial state, to a �nal state

that inorporates the updates made independently at

eah site.

The symboli phase sueeds if one or more satis-

fatory shedules an be found. A onit between

the two logs may ause it to fail. In this ase the sys-

tem presents the appliation with an explanation of

the onit. The appliation may then edit the input

logs to remove the onit and submit to reonilia-

tion again.

4.2 Ations

A log is omposed of a set of reords onneted by a

dependeny graph, whose operators will be de�ned in

Setion 4.3.

Eah log reord desribes an ation performed by

the user while disonneted. A log reord is omposed

of:

Preondition: an assertion about the expeted

state of the objets before exeuting the operation.

Operation (with arguments and results): a

subprogram that aesses the shared objets in some

way.

Postondition: an assertion about the e�et on

the state of the objets after the method has �nished

exeuting.

Assertions are written in a �rst-order logi lan-

guage. Symboli assertions are evaluated symbolial-

ly against a model of the system; the ode is unused.

In the simulation phase, the assertions are heked a-

gainst, and the ode is exeuted on, srath opies of

the atual shared objets. In ontrast to previous sys-

tems, our assertions are not opaque proedures, but

instead provide input to the symboli phase.

Some examples of assertions are x < 5 or after(a),

where a is another ation. In a alendar program,

Mar:free(27-mar-2000-11:00) asserts that the 11:00

slot on 27 Marh 2000 is free in Mar's alendar.

4.3 Dependenies

A log is an ayli direted graph. Nodes represent

ations. An edge represents a onstraint: sequentiali-

ty (noted \� " hereafter), independene (noted \�")

or hoie (noted \2"). If a � b then a appears before

b in any shedule. If a � b then both a and b must

appear in any shedule, but there is no ordering on-

straint between them. If a2b then any shedule must

ontain either a or b.

Page 3

If some ation b in a log depends on the results or

side e�ets of ation a of the same log, assertions pro-

vide the way to express this dependeny. For instane

b might ontain preondition after(a); or a ould on-

tain postondition x = 10 and b preondition x � 5

(assuming no intervening postondition hanges x).

Although two logs represent work done indepen-

dently, dependenies may appear between them. For

instane if log A ontains an ation a with preon-

dition x < 10 and log B ontains an ation b with

postondition x > 20, then in the ombined log b may

not be sheduled before a (assuming no other ations

modify x).

The lause last() in a preondition fores that a-

tion to our last in any shedule. This an fore a

partiular outome by asserting it in the postondi-

tion. For instane, suppose a user writes a heque for

$50 on a shared bank aount x. Other users of the

aount should not ause the heque to boune, i.e.,

he wants to ensure x remains positive despite what

other users do. The following log will do the trik:

Log X f

. . .

ation heque-ation f

pre: 9x

0

: x = x

0

^ x

0

> 50

op: write-heque(x; 50)

post: x = x

0

� 50

g

. . .

ation no-overdraw f

pre: last()

op: no-op

post: x � 0

g

g

A log may ontain multiple last() ations onneted

by the \�" operator.

4.4 Reoniliation

We now examine the algorithm for ombining logs.

Two logs A and B are independent if:

� No preondition of one ontradits a postondi-

tion of the other, and

� No postondition of one ontradits a postondi-

tion of the other.

If independent, the ombined log is A � B. If

they are not independent, then possibly one may be

sheduled before the other (e.g. A � B if A's post-

onditions are ompatible with B's preonditions).

Otherwise maybe A and B an be interleaved (e.g.

a

1

� b

1

� ::: � a

n

� b

m

). To avoid onsidering all

the possible ombinations of nodes from A and B, we

repeat the test for independene to suessively �ner

granularities (binary searh) down to individual a-

tions. In the expeted ommon ase (few onits) it

should onverge rapidly, but in the worse ase, when

many nodes of A onit with many nodes of B this

proess su�ers ombinatorial explosion.

4.5 Commitment

A disonneted update is tentative, as it may be found

later that it annot be applied due to a onit. An

appliation an ommit an ation by marking it as

de�nitive, meaning that any future shedule must

ontain that ation. For instane, a user presented

with a set of possible outomes in the seletion phase

might deide to ommit one of them, by marking the

orresponding ations de�nitive. An ation that an-

not be undone (suh as the physial issuing of a hek)

is also marked as de�nitive. Furthermore the order-

ing between de�nitive ations is itself de�nitive. In

a de�nitive ation, assertion last() evaluates to true

(i.e., does not inuene future sheduling deisions).

In this work we do not make the poliy deision

as to who has the authority to mark an ation as

de�nitive. This might a partiular authorised user

(as in Lotus Notes) or a partiular site (as in Bayou).

Whatever poliy is hosen, the possibility exists that

two oniting ations are independently marked as

de�nitive. Although this is a serious error, we do not

attempt to provide a solution in our framework, be-

ause we onsider this is an unfortunate but inherent

harateristi of disonneted work.

4.6 Parels and transations

The parel onstrut links an set of ations together

indivisibly. Consider a reservation appliation, where

a user reserves transportation to a ity, a hotel, and a

ar rental. If any of the three fail, the trip annot take

plae. A parel aptures this all-or-nothing property.

A parel is omposed of a begin(X) operation (where

X is an arbitrary name), a set of ations with pre-

ondition parel(X), and an end(X) operation. The

following properties hold for a parel: (i) a parel(X)

ation a is sheduled after the begin(X) and before

the end(X) (i.e., begin � a ^ a � end); (ii) in any

shedule, either all ations a

i

of the parel appear, or

none (i.e., (begin � a

1

� a

2

� : : :� end)2nil); (iii) if

any ation in a parel is marked as de�nitive then all

must be.

Note that parels are stritly more powerful than

traditional ACID transations. Parels provide the A

property (all-or-nothing), the de�nitive mark the D

property (durability). Aording to Footnote 1 the C

Page 4

property (onsisteny) is assumed. To provide the I

property (isolation) a number of approahes are pos-

sible. We an emulate traditional serialisability by

implementing loks as assertions. For every value x

read and not modi�ed by an ation, the ation has the

preondition 9x

0

: x = x

0

and postondition x = x

0

.

For every value y written by an ation, the ation has

asserts the postondition y = value-written-to-y. If

an ation uses a value suh as x

0

, read or written in a

previous ation, then its preondition would ontain

the lause x = x

0

.

5 A nomadi shared text editor

In this setion, an example is presented that is rep-

resentative of real ooperative working, and that is

poorly supported by traditional merge proedures.

We espeially want to demonstrate that the poston-

ditions used in our approah allow the apture of the

appliation semantis.

Consider two disonneted users A and B editing

a shared MS Word doument. A replaes all our-

renes of \red" with \white". Meanwhile, user B in-

serts the same word \red" in the doument. There are

two reasonable outomes of reoniling these ations:

(B-Red) insert B's \red" in the text, or (B-White)

replae B's \red" with \white". CVS implements the

B-Red semantis. Bayou would unpreditably hoose

B-Red or B-White depending on the timing of the op-

erations by the users. Instead we want the outome to

be preditable and appliation-seletable. Assuming

that the word \red" in the original doument desig-

nates some onept that is now denoted by \white"

and that B is ignorant of A's ations, then B-White

is the orret outome. However if B really means

something di�erent, then B-Red is desirable.

Assume that A's log is omposed of a searh-and-

replae operation and log B ontains a single ation

\insert red". The two possible outomes, B-red or B-

white, are fored by the use of di�erent postonditions

in the last() ations.

Assume �nd(s) returns the set of loations of string

s in the doument. The respetive logs of A and B

would be:

Log A f

ation A

1

f

pre: 9s

0

: �nd("red") = s

0

op: searh-&-replae("red","white")

post: �nd("white") � s

0

g

g

Log B f

ation B

1

f

pre: true

op: insert-at("red",l)

post: looking-at("red",l)

g

g

Merging the two logs with no further onstraints

will yield unpreditable results (either B-Red or B-

White).

If user B wants to enfore B-Red semantis, putting

the following additional ation at the end of his log

ensures that his insertion is sheduled after the re-

plaements:

ation B-red f

pre: last()

op: no-op

post: looking-at("red",l)

g

The postondition ensures that the "red" inserted

by B will survive ation A. The only possible inter-

leaving is thus A

1

� B

1

.

Similarly, for userA to enfore B-White semantis a

last() ation will do the trik. A's log should ontain:

ation B-white f

pre: last()

op: no-op

post: �nd("red") = ;

g

The postondition of ation \B-white" ensures that

no "red" ourrene survives ation A. The only way

to respet this postondition is to shedule B � A.

If both A and B add these last ations into their

logs, their postonditions ontradit eah other and

they annot be both sheduled { there is an unresolv-

able onit. This is a true onit between the users'

intents, not an arti�ial limitation of the reonilia-

tion engine.

Our approah allows logs to be merged aording to

logial onstraints, not only in time order. Consider

now the following example. Log A is omposed of two

independent ations:

� Operation A

1

: searh-&-replae("red","white")

� OperationA

2

: searh-&-replae("pink","green")

Log B is omposed of two independent ations as

well:

� Operation B

1

: insert-at("pink",l

1

)

� Operation B

2

: insert-at("red",l

2

)

Page 5

Assume that the user A has the same expetations

as in the �rst example and requires B-white semantis

whereas the user B expets his insertion of "pink" to

appear in the reoniled state. The outome of the

reoniliation should ontain the "pink" inserted by

B but not his "red". Thus, A

2

should be sheduled

before B

1

and B

2

before A

1

.

To enfore this sheduling, A and B should add the

following last() ations into their logs:

ation no-red f

pre: last()

op: no-op

post: �nd("red") = ;

g

ation pink-inserted f

pre: last()

op: no-op

post: looking-at("pink",l

1

)

g

This will yield the orret merged log (A

2

� B

1

)�

(B

2

� A

1

). Thus our approah supports useful shed-

ules not allowed by approahes relying on a time or-

dering.

6 Conlusion

Working while disonneted is making a bet on the

future, so it is not surprising that reoniliation is a

diÆult problem. The intended result of reonilia-

tion depends on subtle details of appliation seman-

tis and on users' intents. Our goal is to ease the

burden for appliations, putting as muh as possible

on the system instead, but providing for appliation

semantis and user poliies. An appliation expresses

its semantis and user intents by attahing appropri-

ate assertions to eah ation. Our logs are riher and

more expressive than logs previously used for reon-

iliation.

To alleviate ombinatorial explosion of the searh

spae we ame up with the three-phase approah.

This work is still at an initial phase and we don't

laim to have solved all problems. Combinatorial ex-

plosion is an issue; however our binary-searh algo-

rithm for ombining logs has omplexity ombinato-

rial in the number of onits (assumed low), not in

the number of nodes. Furthermore the searh an be

stopped at any level. If the number of possibilities is

too large for the simulation phase a ranking based on

some poliy ould help. To keep the number of on-

its low, we an suggest making informed deisions

(onit avoidane) and reoniling often.

One problem not addressed here is that even if

eah user's ations are orret, their ombined ativi-

ty might not be. This might be addressed by heking

global integrity onstraints on the shared objets at

the end of every shedule.

One big problem is getting appliations to enter

faithful and meaningful reords in the log. Anoth-

er is the symboli modelling of the state spae for

the symboli phase. Some of the logi is appliation-

independent (e.g., that whatever P , :P ontradit-

s assertion P). However some is appliation-spei�

(for instane, in Setion 5, that looking-at("red"; l)

ontradits looking-at("white"; l)). Although ex-

tremely powerful, suh a general appliation-spei�

logi is probably too omplex for the average applia-

tion programmer. We are therefore now fousing on

a more restrited appliation-spei� logi language,

related to Shwartz's ompatibility matrix [7℄.

Aknowledgments

Thanks to Tony Hoare and Ralph Beket for several

illuminating disussions.

Referenes

[1℄ Olivier Dedieu. R�epliation optimiste pour les appli-

ations ollaboratives asynhrones. PhD thesis, Uni-

versity of Marne-la-Vall�ee, To appear, fourth quarter

2000. http://www-sor.inria.fr/

�

dedieu/.

[2℄ P. Cederqvist et al. Version management with CVS,

1992.

[3℄ L. Kawell Jr., S. Bekhart, T. Halvorsen, R. Ozzie,

and I. Greif. Repliated doument management in

a group ommuniation system. In 2nd. Conf. on

Comp.-Supported Coop. Work, Portland OR (USA),

September 1988.

[4℄ Leslie Lamport. Time, loks, and the ordering of

events in a distributed system. Communiations of

the ACM, 21(7):558{565, July 1978.

[5℄ Friedmann Mattern. Virtual time and global states of

distributed systems. In Parallel and Distributed Al-

gorithms, pages 215{226. Elsevier Siene Publishers

B.V. (North-Holland), 1989.

[6℄ K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.

Theimer, and A. J. Demers. Flexible update propaga-

tion for weakly onsistent repliation. In Pro. Sym-

p. on Operating Systems Priniples (SOSP-16), pages

288{301, Saint Malo, Otober 1997. ACM SIGOPS.

http://www.par.xerox.om/sl/projets/bayou/.

[7℄ P. M. Shwartz and A. Z. Spetor. Synhronizing

shared abstrat types. ACM Transations on Com-

puter Systems, 2(3):223{250, August 1984.

Page 6

