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Abstract

It is common in distributed systems to replicate data. In
many cases this data evolves in a consistent fashion, and
this evolution can be modelled. A probabilistic modelof the
evolution allows us to estimate the divergence of the repli-
cas and can be used by the application to alter its behaviour,
for example to control synchronisation times, to determine
the propagation of writes, and to convey to the user infor-
mation about how much the data may have evolved.

In this paper, we describe how the evolution of the data
may be modelled and outline how the probabilistic model
may be utilised in various applications, concentrating on a
news database example.

1. Introduction

In distributed systems the replication of shared mutable
data has been widely studied. When mutable data is repli-
cated there is a need to consider the consistency model used
to control the level of divergence of the different replicas.

In this paper, we advocate using knowledge of how the
shared data evolves to control and manage divergence. Em-
pirical evidence shows that updates to shared data, in many
cases, follow systematic patterns. By modelling the way in
which the data has been updated in the past, we can provide
information to an application on how, the data has evolved
since the replicas were last consistent. The basis of this ap-
proach isprobabilistic modelling applied to the distribution
of operations performed on the data structure. The approach
is novel and preliminary results on a mobile news database
and a mobile email reader are encouraging.

In the next section we describe the general approach, in
Section 3 a mobile news database case study is detailed, in
Section 4 the results for a mobile email reader are presented
and then in Section 5 we describe other applications we are
currently working on.

2. The General Approach

An application using our approach is provided with prob-
abilistic models that capture how a replicated data structure
evolves in time. These probabilistic models allow the ap-
plication to estimate the number of updates that are likely
to have been performed on the data structure, or part of it,
during a specified time period, for example between the last
time a synchronisation was performed and the current time.
The application can then use this to adapt to the data struc-
tures’ evolution by, for example, controlling when synchro-
nisations should occur, alerting the user to divergence, or
controlling when updates to the shared data are propagated.
The generation of a single probabilistic model that captures
the evolution of the other replicas, is known asinference.
The application then makesdecisions based upon the infor-
mation contained within this single model. This partition of
the problem into two stages of inference and decision en-
ables our approach to be applied to a wide variety of appli-
cations. The inference stage is decomposed into the gener-
ation of models representing the evolution of the replicated
data structure, or parts of it, and the subsequent combining
of these models as requested by the application. In the For
the inference stage a general purpose tool can be used to
create the probabilistic models, and combine them, whilst
the decision stage is specific to each application.

The probabilistic models are generated by a tool, which
requires a log of descriptions of the operations performed on
the shared data structure. For each update to the data struc-
ture the log contains: information about the operation, the
part of the data structure that was affected, the time when
the operation was performed and an identifier representing
the source of the update (for example a user id). A descrip-
tion of the data structure and its different components is also
required by the tool, which allows each component of the
data structure to be modelled independently. Once a set of
probabilistic models have been created, these can be up-
dated dynamically as new updates are performed.

As a simple example of the data structure decomposition,



consider an address database application. Each entry within
the database is marked as either being a personal contact or
as a business contact. This data structure can be thought of
as being composed of two parts, the personal and the busi-
ness parts, and two models can be generated and provided
to the application. A model for the entire address database
can then be generated by combining the two models. A
further sub-division could exist within the database with,
perhaps, the personal database is divided into family and
friends. Separate probabilistic models can then also be gen-
erated for each of these sub-divisions and again composed.

The application is required to create the logs, provide the
information about the decomposition of the data structure,
and to perform the decisions based upon the information
provided by the models.

Probabilistic Modelling Learning of the probabilistic
models can be automated using model selection techniques,
and the models may also be changed over time as more up-
dates are made to the replicas.

A probabilistic model is a particularly powerful repre-
sentation as such models may be combined in a straight-
forward and principled manner. This means that the data
structure can be decomposed and each part modelled indi-
vidually, as can different sources of data updates. For ex-
ample, in the address database application, there could be
separate models for the secretary and the owner of the ad-
dress book, reflecting their particular patterns of updates.
Hence, when the address book is replicated for the owners
use, the probabilistic model generated can describe how the
secretarys copy evolves.

It is important to remember that the probabilistic model
is a prediction of future behaviour based on the past. The
true evolution of the replica may not be consistent with the
model. Even if the model is correct, its probabilistic na-
ture means that its individual predictions can err, even if in
general it is accurate. As a result we advocate using our ap-
proach in ways that will enhance the user experience rather
than restrict functionality. The user interface should suggest
and advise rather than constrain and command.

The System The System is composed of a tool for creat-
ing the probabilistic models, and a library for use in the ap-
plication for merging the probabilistic models. These mod-
els capture the rate at which the operations are performed,
and how that rate changes over time. Therefore, the time
at which an update to the data structure occurs is the pri-
mary information required to create the models. The other
information in the log allows multiple models to be created,
based on the part of the data structure being updated, or on
the user performing the update. In order to achieve this, the
tool pre-processes the log, creating a separate log for each
entity to be modelled. A probabilistic model is then created

for each of these sub-logs independently, and this is now
described.

There are a number of factors that effect the creation of
the models. For example, the periodicity of the data has
to be determined (e.g. hourly, daily, weekly, monthly and
so forth). The tool currently creates histogram based mod-
els. Such models may be parameterised by widths and start-
ing points for the bins. All the parameters of the model
can be learned from the information contained within the
log. It should be noted that there are many alternative
forms of probabilistic model which can be used, for ex-
ample wrapped mixtures of Gaussians and circular normals
(see [5]). Although in this paper we use histogram based
models, we are currently evaluating other approaches.

For each probabilistic model the correct parameters need
to be established, and these control the model complexity.
The main consideration in the selection of the model com-
plexity is its generalisation ability. In other words, we wish
to create a model that not only describes well the updates
upon which it is based but also one that will describe fu-
ture updates. In the address book example above, where
the events we are modelling are updates of the database,
we could create a histogram model with too many bins so
that each update occurs in a single bin. Such a model is
unlikely to provide a good predictor of the evolution of the
replica because the model complexity is too high. At the
other extreme, if we create a histogram model with only
one bin we will be predicting a uniform distribution for
the future updates, again this is likely to be a poor predic-
tor of the replica’s evolution. There is obviously a ‘happy
medium’ and this may be found throughcross-validation of
the model [1]. Cross-validation involves splitting the log
into a number parts, for example five. The first four parts
are then used to construct a model with a particular param-
eterisation and the fifth part is used to ‘validate’ the model.
This involves computation of the histogram models likeli-
hood of creating the validating data. The part that is used
for validation and one of those used for construction is then
inter-changed and the model is re-validated. This procedure
is repeated five times so that each part of the data has been
used to validate the model once giving five different scores.
The validation scores are then combined, for example by
averaging, and the final score is associated with the param-
eters used for constructing the model. A range of param-
eterisations can be tested in this manner and the one with
the highest score is then selected, and utilised to construct a
model based on all the data, which is the final model.

Another factor determined during the cross-validation
phase is the periodicity of the updates. The tool uses a
number of pre-programmed periodicities: a daily cycle, a
weekly cycle, weekdays separately generated from week-
ends, and Saturdays separately generated from Sundays
both of which are separately generated from weekends.



More pre-programmed periodicities can easily be added,
such as hourly or monthly based periodicities. Note that the
set of candidate models includes the uniform distribution,
and so the performance of the system should be no worse
that that of the uniform model, in the event that one of the
pre-programmed periodicities is not appropriate. Currently,
we are looking at other techniques to determine the period-
icity of the updates.

A prior distribution is used, which can either be auni-
form prior or, in some situations, there may be prior knowl-
edge about when the updates arrive. The prior distribu-
tion is combined with the model generated using Bayes’s
rule. For a histogram model this prior plays an important
role of ensuring the final histogram model is non-zero at all
points within its range, i.e. even when there are no observed
points within a bin’s range the histogram has some resid-
ual value. The residual value of the histogram is a further
cross-validated parameter. If there is no or little information
about when the updates occur, this is valuable, because the
model is initialised using the prior distribution and as more
updates are observed, the model is refined to represent more
accurately the underlying distribution of the updates. This
process can be extended to allow more recent data to be
more influential, thereby allowing the system to deal with
non-stationary situations in which the distribution is itself
evolving with time.

3. Example Mobile News Database

We now demonstrate the use of our approach in a mobile
news database application. We are seeing a proliferation of
applications that replicate information on mobile devices,
such as the service provided by AvantGo1. These allow
mobile devices to store replicas of small news databases for
access when the mobile device is disconnected.

Our mobile news database application provides, on a
mobile device, a list and summary of the current news sto-
ries. We assume that the mobile device has wireless connec-
tivity which allows it to synchronise with the master news
database. We assume a pull model, where the device initi-
ates the connection.

For this application a database of new articles is required,
and we generated one from the BBC News web site. The
BBC publishes news articles to their web site 24 hours a day
and each of the news items is classified under a category,
such as sport, business, health and so forth. For every article
appearing on the BBC News website over a three month
period we extracted the date and time of publication, and
the subject of the news article to create a news database.

We treated the news database as the replicated data struc-
ture, and used the information gathered from the website to

1http://www.avantgo.com/

create the log required to generate the probabilistic models.
We decomposed the news database into several parts, where
each subject was treated as a separate part. All writes to the
news database were considered as being performed by a sin-
gle user. The mobile news database application allowed the
user to select which parts of the news database they wished
to have replicated on the mobile device.

The probabilistic models of the news database are cre-
ated by the tool overviewed in the previous section. The
mobile news database uses the probabilistic models to gen-
erate a visual cue in the application interface to allow a user
to see the number of updates that are likely to have occurred
to each part of the news database since the last synchroni-
sation. The application also uses the probabilistic models
to control synchronisation times between the device and the
master news database. It is likely that, due to the cost of
bandwidth, as well as the limited amount of bandwidth, the
mobile devices will not be continuously connected. There-
fore, the synchronisation times have to be chosen, as this is
part of the decision stage.

Optimal synchronisation The obvious approach to
choosing when the mobile device should synchronise would
be to have a user specify the number of synchronisations
per day they were willing to pay for2, and these would oc-
cur uniformly during the day, for example once every four
hours.

Our mobile news database makes an adaptive choice of
when to synchronise. This aims to find a trade-off between
the cost of synchronisation and the average staleness of the
data, where staleness is defined as the time between an ar-
ticle appearing on the master news database and appearing
on the device.

In order to calculate the synchronisation times, it is nec-
essary to formalise the user’s requirements and calculate
how to achieve them. In the mobile news database this is
achieved either by setting the number of synchronisations
per day to achieve a particular average staleness, or by al-
lowing the user to set the number of synchronisations per
day and then scheduling the synchronisation times to min-
imise the staleness.

We express the user’s preferences in terms of acost func-
tion, which represents mathematically what the user wants.
In the news database problem, the simple cost function we
have chosen is one which represents the staleness of the
news articles. We wish to minimise the time that articles
are available in the news database, but are not available on
the mobile device. For every article the staleness is the time
from when the article was available but not in the replica on
the mobile device.

2Assuming a per synchronisation charge; other charging models are
possible and different cost functions can be created to dealwith this in our
approach.
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Figure 1. Synchronisation time optimisation for the Busine ss part of the news database, showing
the learned histogram model together with uniform synchron isation times (dashed lines) and the
optimised synchronisation times (solid lines).
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where�(t) is a time varying function representing the esti-
mated rate at which updates are occuring at the master news
database, and is obtained from the probabilistic model. The
first term in Equation 2 is the expected cost that will be in-
curred when we synchronise at times

i

. Note the inclusion
of the second term, which is the expected cost that will be
incurred when we synchronise at times
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.

We can now minimise the expected cost with respect
to eachs

i

given the neighbouring synchronisations. This
may be done through an iterative algorithm where passes
are made through the proposed synchronisation times opti-
mising each one in turn until convergence is achieved.

An alternative to minimising staleness is to maintain the
same level of staleness that could be achieved using the uni-
form approach, but to achieve this using fewer synchronisa-
tions per day. This has the benefit of reducing the number
of messages required (potentially reducing the financial cost
of using the system), and has implications for saving power.

3.1. Results

Figure 1 shows some of the elements of our approach.
The histogram based probabilistic model for weekdays for
the business part of the news database is shown as boxes on
the graph, generated using the updates occurring in May and
June 2000. The tool automatically determines the periodic-
ity of the data, and for the business part of the news database
this is a weekday and weekend periodicity. Therefore, the
weekdays are mapped into one twenty-four hour period and
created a histogram to represent that twenty-four hours, and
this is shown in Figure 1 (there is a separate model for the
weekend which is not shown here). Six synchronisations
were requested per day, and the vertical solid lines in Fig-
ure 1 show the optimal synchronisation times, to minimise
the staleness. The vertical dotted lines in the lower half
of the graph identify synchronisation times as taken from a
‘uniform’ strategy that synchronises every four hours.

Table 1 presents some results for our news database ap-
plication, showing the staleness achieved when each of the
four named databases is replicated individually, and when
they are all replicated. It shows the average time in min-
utes between an article becoming available on the master
news database and appearing in the replica on the mobile
device, for articles arriving on weekdays in July 2000. The
figures show the results when six synchronisations per day
were used, with both the uniform and adaptive synchroni-
sation times. The uniform approach started at midnight, as
is shown in Figure 13. The percentage decrease in stale-
ness for adaptive over uniform is shown. In the final column
the number of synchronisations required by the adaptive ap-
proach to achieve a similar average staleness of articles as
the uniform approach is given, with the observed average
staleness shown in brackets afterwards.

3It should be noted the effect of starting the uniform synchronisation at
other times does not impact the results significantly.



Staleness (mins) % Decrease in staleness Number of synchronisationsClassification
Uniform Adaptive for adaptive over uniform for equivalent staleness

Business 123.3 87.9 29% 4 (130.2)
Entertainment 113.7 78.6 31% 4 (119.4)

Health 131.8 94.6 28% 5 (125.4)
UK 120.2 109.5 9% 5 (127.2)
All 122.3 105.2 14% 5 (132.9)

Table 1. Results for weekdays of the month of July 2000 using s ix synchronisations and comparing
uniform with optimised synchronisation times, together wi th the number of optimised synchronisa-
tions required to achieve comparable levels of staleness as six uniform synchronisations.

4. Example Mobile Email Client

We now demonstrate the use of our approach in a second
example, a mobile email client. A central server is being
used to store email, and the mobile email client running on
a mobile device synchronises with the central email server.
We assume that a pull model is used, so the mobile email
reader initiates the synchronisation. The mobile email client
is similar to the mobile news database, and uses the proba-
bilistic models to indicate to the user the likely divergence
between the email cached on the mobile device, and the to
control when synchronisations should occur. These are cal-
culated using a similar cost function to that used in the News
Database example.

A tool was used to create a log of when email arrived
(email folders updated) for six Microsoft Exchange users
over the months of January and February 2001, by using in-
formation held in the Exchange server. The update log for
January was used to create the probabilistic models and the
information for February was used to evaluate the perfor-
mance of the synchronisation times chosen. The probabilis-
tic models were created automatically, with the tool calcu-
lating the periodicity of the data being modelled. For the
six users, four were modelled using a weekly periodicity,
and the other two were modelled using a weekday/weekend
periodicity.

Figure 2 presents results for the optimally chosen syn-
chronisation times for the six Exchange users, showing the
mean percentage decrease in staleness versus the number
of synchronisations per day, with the error bars represent-
ing +/- one standard deviation. For the uniform synchroni-
sation, all possible synchronisation times (based on a five
minute granularity) were tried. So, for 24 synchronisations
per day, the scenarios tried included a synchronisation oc-
curred on every hour, then 5 minutes past every hour, then
10 minutes past every hour, etc. In this example, 11 sets of
synchronisation times would be calculated and the average
staleness was evaluated, and used to represent the staleness
for the uniform approach.

The number of synchronisations was varied between 1
and 24 synchronisations per day. The results show clearly
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Figure 2. Reduction in staleness of email
items for between 1 and 24 synchronisations
per day for six users.

that regardless of the number of synchronisations per day
the average staleness of email is reduced.

5. Other Applications and Future Work

Web Cache Web caches have become an integral part of
the World Wide Web. Caches are embedded within web
browsers as well as throughout the general infrastructure of
the web. Their role is to replicate web pages thereby reduc-
ing latency of web page access, bandwidth usage and web
server load. The HTTP protocol [4] provides support for
web caches, allowing the life times of object received to be
explicitly set, and for fields providing explicit instructions
to caches on how to treat a particular page. A number of
schemes have been proposed to allow caches to work more
efficiently [6].

Many web sites are automatically generated using tools
that could generate logs of when the pages are updated.
These logs could then be used by our tools to generate the
probabilistic models of each page. The models are small
(approximately 100 bytes) and can be carried within the
HTTP protocol from the web server which generates the
web page to web caches and browsers. Enabled web caches
and browsers can then use these models to make decisions



about when a cached page is still acceptable (under user
specified parameters), and inform a user the likelihood that
the page has been updated.

Calendar The examples used so far involve data that can-
not be modified at the replica. Whilst interesting, clearly the
most exciting applications are those that allow the all repli-
cas to be modified. Therefore, we have been looking at a
calendar application, where a single user’s calendar is repli-
cated, and there are multiple people concurrently accessing
and updating the calendar (for example a manager and their
secretary).

As with the mobile news database and mobile email
reader, the calendar application can calculate synchronisa-
tion times. More interestingly, the user interface can use
the information to adapt, for example, indicate appointment
slots that are less likely to lead to conflicts when synchro-
nisation occurs. Also, potentially, the models can be used
to providejust-in-time update propagation. Imagine a sce-
nario where a secretary has access to a salesperson’s cal-
endar. The salesperson and the secretary are the only peo-
ple who make appointments and the secretary works only
weekdays. If on a Saturday the salesperson makes an ap-
pointment for the following week this need not be prop-
agated until Monday morning, when the secretary arrives.
However, if on a Tuesday morning the salesperson makes
an appointment for the next day this should be propagated
immediately because the secretary will be booking appoints
on the same day. If the same salesperson also makes an
appointment on the Tuesday morning for a month in the
future, this might not need to be propagated immediately
because, for example, the secretary never makes appoint-
ments more than a week in advance. Using the models of
how the data evolves, the write update’s propagation can be
delayed until the system thinks that by delaying any longer
the chance of conflict increases significantly. Furthermore,
the updates can be propagated in any order. Thus the advan-
tages of delaying propagation are that it may be possible
to package the updates in packets more efficiently, saving
cost and bandwidth, as well as the potential to delay until
a cheaper communication medium becomes available. We
are currently working on evaluating the feasibility ofjust-
in-time update propagation.

6. Related work

Cho et al. [3, 2] examine techniques for a web crawler
to maintain a large repository of web pages. Their work is
focused on when each of the web pages should be checked
in order to maintain a fresh and consistent repository. This
involves estimating the rate of update of web pages, which
is assumed to be constant. The main aim of their approach
is to obtain an estimate of the rate of page update given that

they haven’t observed every update of the page. Due to its
nature, a web crawler is unable to obtain a complete log of
page updates and as a result it is non-trivial to obtain an un-
biased estimate of the rate of change of the page. The model
they prescribe is too simple, however, to enable decisions on
the granularity of a day about when synchronisations should
be made.

In contrast, we assume that we have complete logs of
updates. Our models can be much richer than an estima-
tion of a constant rate and thus provide more information
for decision making. We are also making the information
available to the application, allowing it to choose when to
synchronise (picking an optimal time to synchronise rather
than just picking the order in which to synchronise elements
in the database), and also allowing the application to gener-
ally alter its behaviour based on the expected divergence.

In TACT [7] a number of metrics are proposed that al-
low the control of the replica divergence:Numerical error,
Order error andStaleness. However, these metrics control
the divergence rather than attempt to estimate its probable
divergence.

7. Conclusions

This paper has described how probabilistic models can
be used to estimate replica divergence and has given exam-
ples as to the sort of decisions that can be made based upon
these models to improve the end-user experience. We have
given a proof-of-concept demonstration of the approach in
two simple applications and have suggested further, more
complex examples to which the methods can be applied.
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